
Appendix A 

Statistics 

Data Handling: 

 

Introduction 

This document describes the various procedures that may be applied in the processing of data obtained in the 

modern physics lab.  There are four sections, Error Analysis, Significant figures, graphical analysis and curve 

fitting. 

 

1 Error Analysis 
 In the laboratory there are generally two types of error which are usually responsible for the experimental 

errors in the measured quantity – systematic and random errors.   

 Systematic errors are due to known causes and can, in theory, be removed.  These types of errors usually 

manifest themselves as measured values in which are consistently too high or too low.  Systematic errors may be 

further divided into four types. 

   Instrumental – An incorrectly calibrated instrument. E.g. a scale that has not been zeroed. 

   Observational – Operator error.  E.g. parallax when reading a meter. 

   Enviromental – E.g. variation of gravity with altitude. 

   Theoretical – Simplification of model or approximation in equations describing the system. 

 

Random errors are positive and negative fluctuations that result in about 50% of the recorded measurements being 

too high and about 50% being too low.  Sources of random errors are not always apparent. Possible causes are: 

   Observational – E.g. error in judgment when reading the smallest division of a scale measuring device. 

   Environmental – E.g. Unpredictable variations in supply voltage to , or temperature variations in 

experimental equipment. 

 

Figure 1. illustrates the effects of these two type of errors.  Figure 1(a) shows typical results from the 

measurement of some quantity in the presence of only random errors.  In this case, the values are distributed about 

the true value.  Figure 1(b) shows the same measurement but in the presence of systematic errors as well as 

random errors.  In this case, the values are spread about some displaced value rather than the true value. 

 

 

Figure 1: Set of measurements (a) with only random errors present (b) with 

both random and systematic errors present. 

 

 When a physical quantity, such as a length measured with a ruler, is measured several times, then a 

distribution of readings is obtained because of random errors.  For such a set of data the mean or average value is 

defined by 

Parameter being measured 
True Value 
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 where xi is the ith recorded value and n is the total number of measurements.  These n values will be distributed 

about  ̅ as shown in Figure 1(a).  A smaller spread of values about the mean indicates a higher precision. 

 

Simply defining the mean value of a set of data points is not sufficient.  We need to estimate the precision or 

uncertainty in the value.  There are different ways of doing this, we shall only consider the standard deviation. 

 The standard deviation is defined as 
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If s is small, then the spread in the measured values will be small and the precision in the measurements will be 

high. The error of uncertainty in  ̅ is the standard deviation of the mean,sm, defined as 
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Where s is the standard deviation and n is the total number of measurements.  From this we can say that the 

average value is  

 

  ̅     (4) 

 

1.1 The Gaussian distribution 
 Figure 2 shows the results from two different sets of position measurements.  Both sets of data contain n 

measurements.  The x axis has been divided into equal increments of width x and each dot represents a 

measured value.  The vertical position of the dots is simply to make the dots more visible and is of no physical 

significance. 

 In Figure 2(a) the values in series 1 are more closely clustered and so represent a more precise set of 

measurements.  In Figure 2(b) the number of measured values N(x) for each increment of x is shown. The series 

1 graph has a more sharper peak which again indicates that the data of series 1 is more precise than series 2.  If the 

number of measurements become very large, then the measured values are distributed evenly about the mean 

value as shown in Figure 2(c).  For very large n, the standard deviation is denoted by  and each curve in figure 

2(c) represents the frequency with which some value x is obtained as the result of a single measurement.  Ideally, 

the analytical expression for these curves is given by 
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 Where n is the very large number of measurements,  ̅ is the mean value and  is the standard deviation.  This 

equation defines the Gaussian (or Normal) distribution.  If the measurements are carried out to great precision  

will be small and the distribution will be a sharp peak about  ̅. 

  



(b)  

 

(c)  

 

 

Figure 2: Two Sets of measurements for the same physical quantity. (a) Each dot represents 

a measurement. (b) N(x) is the number of measurements in the increment x. (c) 

Distribution for very large n. In this limit, the distribution approaches the Gaussian or 

normal distribution and x1 and x2 approach the same value. 
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 Conversely, if the set of measurements is of low accuracy,  will be large and the distribution will be broad 

about  ̅. 

 

 To obtain the probability P(x) of obtaining some value of x as a result of a single measurement, we divide (5) 

by n and define P(x) to be N(x)/n to give 
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1.2 Estimation of random Errors 
 

 Although there are precise mathematical methods for calculating random errors, these can be time consuming.  

A sufficient estimate of measurement errors may be obtained more readily from a subjective standpoint.  For 

example, a length measurement is only likely to be as accurate as the smallest division on the ruler. Any 

measurement using a ruler whose smallest increment is 0.1cm would have an uncertainty in the measurement of 

± 0.1cm. 

 Further error can be introduced in what is being measured. Figure 4 shows an example where common sense 

and judgment are needed to provide a suitable estimate. In Figure 4 the distance d1 represents a clearly define 

measurement, limited only by the precision of the measuring instrument.  However, there is the further 

complication of deciding where the center of the bodies lay in the measurement for d2.  The error in this 

measurement would clearly be larger than the former. 

 

Figure 4 

 

1.3 Propagation of Errors 
 

 The propagation of errors is a method by which the error in some final value, which depends on two or more 

other values with known estimated errors, may be calculated from these known errors.  We consider first the 

method for addition and subtraction of errors, then extend the process to multiplication and division of errors. 

 Let x, y and z be three measured values with estimated errors x, y and z respectively.  We would express 

these results as  

 

 x ± x  y ± y  z ± z   (7) 

 

Now let w be some known function of the measured values, i.e w = w(x,y,z).  We wish to calculate w and its 

associated error  w.  From statistical theory 

 

   √(
   

   
 )

 
 (

   

   
 )

 
 (

   

   
 )

 
 (8) 

Equation (8) is the basic formula for error propagation. 

d1 

d2 



 

1.3.1 Addition and Subtraction of measurements 

 

Suppose that 

 w = ax + by + cz (9) 

 

where a, b, and c are known positive or negative constants and x, y and z are measured values with associated 

errors x , y and z respectively.  From (8)  w/ x = a etc and so 
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If one of the estimated errors is significantly larger than the others then, to a first approximation, we may ignore 

the others; for example if cz is much larger, equation (10) approximates to 

 

    √(  ) = cz (11) 

This will often suffice when estimating errors while the experiment is being performed.  The final lab write up 

will require a full treatment. 

 

Example 

Suppose that three measured lengths and the associate errors are. 

 

  L1 ± L1 = 5.94 ± 0.3 cm, L2 ± L2 = 1.64 ± 0.2 cm, L3 ± L3 = 4.73 ± 0.1 cm 

 

and let the quantity to be calculated, L, be defined as  L = L1 + 2L2 + 3L3 

then from equation (10). 
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  √(     )  (     )  (     ) = ± 0.58 cm 

 

and so  L = 23.41 ± 0.6cm 

 

1.3.2 Multiplication and Division 

 

Suppose that 

 w = kx
a
y

b
z

c
 (12) 

 where k, a, b and c are constants, positive or negative. From equation (8) 
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Dividing both sides by w and writing w = kx
a
y

b
z

c
 on the left hand side of the equation yields 
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Moving the 1/( kx
a
y

b
z

c
 ) under the root and then simplifying  
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2  Significant Figures 
 

 The significant figures in a number are the figures that are obtained directly from measurements and exclude 

any zeros included for the purpose of locating the decimal point.  A measurement and its experimental error 

should have their last significant digits in the same position relative to the decimal point – e.g. 3.141 ± 0.003, 

314 ± 2 or (3.14 ± 0.01)x10
-1

. 

 The correct number of significant figures to which a result should be quoted should ideally be found from 

error analysis.  However, this does take time and usually when performing calculations in the laboratory it is 

sufficient to retain enough significant figures such that round off errors is not a problem, but not retaining so 

many as to make the calculation unnecessarily long winded, e.g., 

 

 0.91 x 1.25 = 1.1  (wrong) (16) 

 

Here, the numbers 0.99 and 1.11 are defined to around 1% whereas the result is defined only to 10%.  So the 

accuracy of the final result has been reduced by a factor of 10 as a consequence of discarding too many digits. 

 

 0.91 x 1.25 = 1.1375  (wrong) (17) 

 

Here the extra digits have no meaning, and give an incorrect indication of the accuracy of the experiment. 

 

 0.91 x 1.25 =1.138 ( okay ) (18) 

 0.91x1.25 = 1.14 (Best) 

3 Graphical Analysis 
 

When analyzing experimental data it is often necessary to present data in a graphical form.  This section provides 

guidelines for presentation and analysis. 

 

Speed (m/s) Time (s) 

0.45 ± 0.06 1 

0.81 ± 0.06 2 

0.91 ± 0.06 3 

1.01 ± 0.06 4 

1.36 ± 0.06 5 

1.56 ± 0.06 6 

1.65 ± 0.06 7 

1.85 ± 0.06 8 

2.17 ± 0.06 9 

Table 1: Set of measurements of speed of a particle at different times. 

 

 



 Select the range of the axes to use as much of the graph as possible.  If data occupies only a small 

portion of the graph, it will hinder interpretation of the graph. 

 Give the graph a concise title. 

 Label the axes and include units. 

 Select a scale for each axis and start each axis at zero (if possible). 

 Use error bars to indicate errors in measurement. 

 Draw a smooth curve through the data points.  If errors are random, approximately 30% of them will 

not lie within their error range of the best fit curve. 

 

 When graphing your data, you will be using a computer.  Nevertheless, we will review the process for 

analyzing data in the absence of a computer as many points remain relevant.  In the next section we will look at 

more precise ways of analyzing data which ideally, but not necessarily, requires a computer. 

 Consider the set of data provided in Table 1.  A graph is shown in Figure 5.  From this graph it is clear that 

the speed varies linearly with time.  The general equation for a straight line is  y = mx + c, where m is the slope of 

the line and c is the y intercept.  The data in table 1 follows the kinematics equation v = at + vo. 

 

 
Figure 5 
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From inspection of the graph, vo = 0.30 m/s.  To determine the slope we select two well separated points on the 

line ( which are not data points) and then  

 

 a = slope = 
 

 
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           (19) 

 

The equation of the line for the data set is then  v = 0.20t + 0.3(m/s) 

 

As an example of a non-linear relationship, we consider the variation of the position of the particle with time.  

The graph of the data shown in Figure 6 is taken from Table 6.  The distance measurement is given an uncertainty 

of 3%.  The error bars for each data point changes accordingly. 

 

 

 
Figure 6 

 

 

 

Distance (m) Time (s) 

0.20± 3% 1 

0.43± 3% 2 

0.81± 3% 3 

1.57± 3% 4 

2.43± 3% 5 

3.81± 3% 6 

4.80± 3% 7 

6.39± 3% 8 

Table 6 

 

 

 

Clearly a linear treatment of the data would be inappropriate.  From the form of the curve  it would not be 

unreasonable to assume a power or polynomial relationship i the form of y = at
n
. 

 

In this case, from kinematics we would expect a relationship of the form  d = ½ at
2
, where a is the particles 

acceleration. In this case, a graph of d vs t
2
 would yield a straight line.  You can do this yourself to see that 

d = mt
2
 + do. 
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3.1 Semi-log Data Plotting 
Often the relationship between measured variable is not linear.  For example, Lambert’s Law relates the intensity 

of Light, I, transmitted through a sample of thickness x 

 

      
    (20) 

where Io is the incident intensity and   is the absorption coefficient and depends on the sample and the 

wavelength of the radiation. 

 

 Figure 7 shows a set of measurements of I for different values of x.  From the smooth curve, it is unclear 

whether the data obeys Lambert’s Law.  To find the relationship between I and x, it is necessary to make a semi-

log plot.  A semi-log plot has a logarithmic y axis and a regular x axis.  A semi-log plot of the data is shown in 

figure 8.  Missing from both graphs are the error bars, the uncertainty would not be one fixed value for all 

measurements but would be determined for each data point individually using the methods of propagation of 

errors for equation (20) as outline in the section 1. 

 

 
   Figure 7 Figure 8 

 

Note on the semi-log 

 

 The y axis has no zero 

 When reading values off the y axis you read the logarithm of the value and not the value, e.g. log 9 and 

not 9 

 

The smooth curve drawn through the data in Figure 8 is a straight line with a negative slope and the intensity at 

the point where the line intersects the vertical axis ix Io.  Taking the logarithm of (20) 
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   log I = log(Ioe
- x

) 

   = log e
- x

 + log Io 

   =- x log e + log Io 

   =-0.434  x + log Io (21) 

 

Compare equation (21) to the general equation of a line  y = mx + b, we see that y = log I, m = - 0.434   and 

b = log Io.  So a plot of log I versus x will yield a straight line with a gradient of -0.434  and a y-intercept of 

log Io.   We can calculate the slope as follows: 

 

 slope = 
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(         )  
= -0.294 cm

-1 

 

 

 

 


