
http://www.uta.edu/math/preprint/

Technical Report 2014-18

Self-Corrective Algorithms for
Generalized Diagonally

Dominant Matrices

Jinrui Guan
 Linzhang Lu
 Ren-Cang Li
 Rongxia Shao

Self-Corrective Algorithms

For Generalized Diagonally Dominant Matrices

Jinrui Guan∗ Linzhang Lu† Ren-Cang Li ‡ Rongxia Shao§

November 5, 2014

Abstract

A suggestive indicator is proposed for predicting whether a given (complex or
real) square matrix A is or isn’t a generalized diagonally dominant matrix (GDDM)
by which we mean if A can be brought into a strictly diagonally dominant matrix by
post-multiplying some diagonal matrix D. Based on the indicator, three self-corrective
algorithms are presented for determining if A is or is not a GDDM and at the same
time delivering the matrix D in case when A is a GDDM. The basic idea is to push
A towards being (strictly) diagonally dominant when the indicator suggests that A is
likely a GDDM or towards being off-diagonally dominant otherwise. Among the three
algorithms, each has their own feature: one takes the fewest number of iterations but
the most amount of work per iteration, one takes the most number of iterations but
the least amount of work per iteration, and the third one strikes a balance between the
two extremes. Comparing with existing methods, new algorithms are more efficient, as
demonstrated on known difficult examples in the literature as well as newly designed
random matrices.

Key words. Generalized diagonally dominant matrix, GDDM, M-matrix, H-matrix, self-
corrective iteration

AMS subject classifications. 15B99, 65F10, 65F35

1 Introduction

A (complex or real) square matrix A is called a generalized diagonally dominant matrix
(GDDM), also called a nonsingular H-matrices, if there is a diagonal matrix D such that
AD is strictly diagonally dominant. GDDMs play important roles in numerical analysis,
matrix theory, control systems, and mathematical economics, to name a few (see, e.g.,
[3, 11, 24]). In certain applications, it’s critically important to know whether a given

∗School of Mathematical Science, Xiamen University, P. R. China. E-mail: guanjinrui2012@163.com.
†School of Mathematics and Computer Science, Guizhou Normal University, & School of Mathematical

Science, Xiamen University, P. R. China. E-mail: lzlu@xmu.edu.cn, llz@gznu.edu.cn. Supported in part
by National Natural Science Foundation of China grant 10261012 and 11428104.

‡Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington, TX 76019
E-mail: rcli@uta.edu. Supported in part by NSF grants DMS-1115834 and DMS-1317330, a Research
Gift Grant from Intel Corporation, and NSFC grant 11428104.

§School of Mathematical Science, Xiamen University, P. R. China. E-mail: shao-rongxia@163.com.

1

matrix is a GDDM or not. In general this is not an easy task. In recent years, there are
quite some studies on this subject, and several methods some of which are quite efficient
have been obtained for determining if a given A is or isn’t a GDDM and possibly a diagonal
matrix D in case when it is GDDM (see, e.g., [1, 2, 4, 9, 10, 12, 14, 15, 16, 17, 18, 20]).
These methods can be divided into two categories: direct methods and iterative ones. It
was argued in Alanelli and Hadjidimos [1] that direct methods have high computational
complexities, while iterative ones are usually much cheaper and more efficient, especially
for large sparse matrices.

Among studies on iterative methods, we mention these papers [1, 2, 14, 15, 16, 17, 18,
20]. Here in this paper, our interest is also in iterative methods. Throughout this paper,
A ≡ (aij) is always an n×n (complex or real) matrix with aij being its (i, j)th entry. Let

N = {1, 2, · · · , n},

and define

ri(A) =
∑

i ̸=j∈N
|aij |, ti(A) =

ri(A)

|aii|
for i ∈ N (1.1)

which are the off-diagonal absolute-row sums of A and the ratios of the sums over the
corresponding diagonal entries, respectively. As a convention, we let ti(A) = +∞ if
aii = 0 (even when ri(A) = 0).

For any particular i, if ti(A) < 1, then the ith row is diagonally dominant, and the
smaller ti(A) is, the stronger the corresponding diagonal dominance will be. If ti(A) <
1 for all 1 ≤ i ≤ n, i.e., [maxi ti(A)] < 1, then we say that A is strictly diagonally
dominant; if, however, [maxi ti(A)] ≤ 1, A is diagonally dominant. For the opposite,
if ti(A) > 1, then the ith row is off-diagonally dominant, and the bigger ti(A) is, the
stronger the corresponding off-diagonal dominance will be. If ti(A) > 1 for all 1 ≤ i ≤ n,
i.e., [mini ti(A)] > 1, then we say that A is strictly off-diagonally dominant; if, however,
[mini ti(A)] ≥ 1, then we say that A is off-diagonally dominant.

Often mini ti(A) ≤ 1 ≤ maxi ti(A) for a given matrix A. In terms of the notation
ti(·), A is a GDDM if and only if maxi ti(AD) < 1 for some positive diagonal D which is
usually unknown and can only be obtained by nontrivial computations. In the case that
A is not a GDDM, such a D doesn’t exist, but it can be shown that there exists a positive
diagonal D such that mini ti(AD) ≥ 1, provided A is irreducible (Theorem 2.2 below). In
summary, when A is irreducible, we can always find some positive diagonal D such that
either maxi ti(AD) < 1 when A is a GDDM or mini ti(AD) ≥ 1 when A is not a GMMD.

The goal of this paper is to seek a positive diagonal D such that either mini ti(AD) ≥ 1
or maxi ti(AD) < 1 (or just less than or equal to 1). This is a realizable goal for a GDDM
A and an irreducible non-GDDM A, as we just mentioned in the previous paragraph. To
achieve this goal, we iteratively either decrease maxi ti(A) or increase mini ti(A) through
updating A by post-multiplying it by some positive diagonal matrices.

But when should we work to decrease maxi ti(A) or increase mini ti(A)? For that, we
propose to use

[min
i

ti(A)] · [max
i

ti(A)] (1.2)

as an indicator as to how likely A can be transformed to AD that is diagonally dominant
or off-diagonally dominant. If the product is less than or equal to 1, then we may think

2

that mini ti(A) “dominates” maxi ti(A) and thus it is reasonable for us to predict that
A tilts towards being a GDDM. In such a case, we should work to decrease [maxi ti(A)].
On the other hand, if the product is bigger than 1, then mini ti(A) is “dominated” by
maxi ti(A) and thus it is reasonable for us to predict that A tilts towards being off-
diagonally dominant. In such a case, we should work to increase [mini ti(A)].

Like at any circumstance, prediction can go wrong. When it does, the conventional
thinking is that any work before the prediction changes is waste of effort. Miraculously,
this is not the case for our self-corrective algorithms in this paper. As our convergence
analysis will show, our algorithms continue to make progress towards the final answer
even during iterations under incorrect predictions. For example, suppose the indicator
(1.2) goes from above 1 to under 1 and then back above 1 again. This means that we
need to switch gear from pushing A towards being off-diagonally dominant, i.e., increasing
mini ti(A), to pushing it towards being diagonally dominant, i.e., decreasing maxi ti(A)
and then to pushing it towards being off-diagonally dominant again. A natural question
is that: do we degrade mini ti(A) during the time when we work to decrease maxi ti(A)?
If we did, the iterative process could oscillate without making progress. Luckily, such a
scenario doesn’t happen for our algorithms. We will prove that mini ti(A) at the end of
the step when the indicator switches back to above 1 is strictly bigger than the one right
before the indicator goes under 1. The similar statement can be said for the case when
the indicator goes from under 1 to above 1 and then back to under 1 again. Therefore our
self-corrective algorithms always make progress regardless what the indicator says. That
is the most favorable feature of our self-corrective algorithms – never stopping making
progress towards the final answer.

Bringing a GDDM A to strictly diagonally dominant AD has important numerical
consequences, especially for linear systems Ax = b with a GDDM A. Such linear systems
can be transformed into strictly diagonally dominant linear systems. With care, the latter
can be solved more accurately [5, 6, 13] than not knowing they are strictly diagonally
dominant systems. Symmetric diagonally dominant linear systems can be provably solved
in nearly-linear time [22].

The rest of this paper is organized as follows. In section 2, we introduce some standard
definitions and basic results. In section 3, we discuss two recent iterative methods that were
tested to work better than other existing ones according to the literature. We propose our
self-corrective algorithms in section 4 and analyze their convergence behavior in section 5.
In section 6, we present numerical examples and comparison results to demonstrate the
effectiveness of our algorithms. Finally, we give a few concluding remarks in section 7.

2 Preliminaries

First, we introduce a few standard definitions [3, 24]. For A ≡ (aij) ∈ Cn×n, the set of all
n× n complex matrices, set

N−(A) = {i ∈ N : |aii| < ri(A)}, (2.1a)

N0(A) = {i ∈ N : |aii| = ri(A)}, (2.1b)

N+(A) = {i ∈ N : |aii| > ri(A)}. (2.1c)

3

Evidently, N = N0(A)∪N+(A)∪N−(A). In, or simply I if its size is clear from the content,
is the n× n identity matrix.

For a vector x, diag(x) denotes the diagonal matrix with the entries of x on its main
diagonal. For a matrix B and a vector x, B > 0 and x > 0 mean that they are entrywise
positive, and similarly, B ≥ 0 and x ≥ 0 mean that they are entrywise nonnegative.

Definition 2.1. Suppose A ∈ Cn×n.

1. A is diagonally dominant if N0(A) ∪ N+(A) = N, and strictly diagonally dominant
if N+(A) = N. A is off-diagonally dominant if N0(A) ∪ N−(A) = N, and strictly
off-diagonally dominant if N−(A) = N.

2. A is said to be a generalized strictly diagonally dominant matrix (GDDM) if there
exists a positive diagonal matrix1 D such that AD is strictly diagonally dominant.

3. A is reducible if there exists a n× n permutation matrix Π such that

ΠAΠT =

[k n−k

k A11 A12

n−k 0 A22

]
,

for some 1 ≤ k < n, where ΠT is the transpose of Π. It is irreducible if it is not
reducible.

4. A is an irreducibly diagonally dominant matrix if it is irreducible, N0(A)∪N+(A) =
N, and N+(A) ̸= ∅, i.e., |aii| ≥ ri(A) for all i ∈ N and at least one of them is strict.

Definition 2.2. Suppose A := (aij) ∈ Rn×n, the set of all n× n real matrices.

1. A is called a Z-matrix if aij ≤ 0 for i ̸= j.

2. Any Z-matrix A can be expressed as A = cI−B, where c > 0 and B ≥ 0. A is called
an M-matrix if c ≥ ρ(B), and a nonsingular M-matrix if c > ρ(B), where ρ(B) is
the spectral radius of B.

Definition 2.3. The comparison matrix of A ∈ Cn×n is denoted by M(A) := (mij) and
defined by

mij =

{
|aij |, for i = j,

−|aij |, for i ̸= j.

A ∈ Cn×n is called an H-matrix if M(A) is an M-matrix, and a nonsingular H-matrix if
M(A) is a nonsingular M-matrix.

Next, we summarize several basic results that will be useful later. They may be found
in the classical books [3, 8, 24]. We prove them here for self-containedness.

Theorem 2.1. Suppose A ∈ Cn×n.

(a) A is a GDDM if and only if AD is a GDDM for any given positive diagonal D.

1The requirement that D has positive diagonal entries is not essential, but has been imposed in the
literature.

4

(b) A is a GDDM if and only if it is a nonsingular H-matrix.

(c) An irreducible diagonally dominant matrix is a GDDM.

(d) If A is a GDDM, then N+(A) ̸= ∅, i.e., A has at least one strictly diagonally dominant
row.

(e) Suppose A is irreducible and N−(A) = ∅. A is a GDDM if and only if N+(A) ̸= ∅.

(f) If A is a GDDM, then aii ̸= 0 for all i ∈ N.

Proof. Items (a) and (f) are rather obvious by definition.
For item (b), if A is a GDDM, then there exists a positive diagonal D such that AD is

strictly diagonally dominant. So M(AD) = M(A)D is strictly diagonally dominant and
thus M(A) is a nonsingular M-matrix, or equivalently, A is a nonsingular H-matrix. On
the other hand, if A is a nonsingular H-matrix, then M(A) is a nonsingular M-matrix.
Therefore there exists an n-vector x > 0 such that M(A)x > 0. It can be verified that
AD is strictly diagonally dominant, where D = diag(x).

Item (c) holds because any irreducible diagonally dominant matrix is nonsingular [24,
p.23] and thus M(A) is a nonsingular M-matrix. So A is a nonsingular H-matrix. Now
use item (b) to conclude the proof.

For item (d), suppose that A is a GDDM, then AD is strictly diagonally dominant for
some positive diagonal D = diag(d1, . . . , dn). Then M(A)x > 0, where x = [d1, . . . , dn]

T.
Let di be the smallest entry of x. Then

|aii|di −
∑
j ̸=i

|aij |dj > 0 ⇒ |aii| >
∑
j ̸=i

|aij |
dj
di

≥
∑
j ̸=i

|aij |.

That is i ∈ N+(A).
For item (e), if N+(A) ̸= ∅, then A is a GDDM by item (c). On the other hand, if A

is a GDDM, then N+(A) ̸= ∅ by item (d).

Theorem 2.1(b) leads to ways for checking if a given A is a GDDM by verifying if
A a nonsingular H-matrix. The basic idea is as follows. Since M(A) is a Z-matrix and
can be written as M(A) = cI − B, where c > 0 and 0 ≤ B ∈ Rn×n. By the theory for
nonnegative matrices [3, 19, 24], ρ(B) is an eigenvalue and it is among one of the largest
in absolute value. Compute it and then check if c > ρ(B) to arrive at a conclusion. But
this could be a very expensive approach, e.g., in the case when B is imprimitive, B has
several eigenvalues equally spaced on the circle {z ∈ C : |z| = ρ(B)} [19, pp.675-680] and
thus simple methods like the power method usually diverge.

If we can find a positive diagonal D such that

1. N+(AD) = ∅, i.e., mini ti(AD) ≥ 1, then A is not a GDDM by Theorem 2.1(d), or

2. N+(AD) = N, i.e., maxi ti(AD) < 1, then A is a GDDM by definition.

In the case when A is irreducible, the condition in the second item can be weakened to

min
i

ti(AD) < max
i

ti(AD) ≤ 1.

5

for claiming that A is a GDDM by Theorem 2.1(c,e).
Basically, what most existing algorithms, and ours in this paper included, try to do in

finding whether A is a GDDM or not is to seek a positive diagonal matrix D such that AD
is either (strictly) diagonally dominant, i.e., maxi ti(AD) ≤ 1, or off-diagonally dominant,
i.e., mini ti(AD) ≥ 1. The question is whether for any given A ∈ Cn×n it is always possible
to find such a positive diagonal matrix D. In the case when A is a GDDM, by definition
we can find a positive diagonal matrix D such that maxi ti(AD) < 1. What happens when
A is not a GDDM? Is there a positive diagonal matrix D such that mini ti(AD) ≥ 1? The
answer is yes when A is irreducible, but depends when A is reducible.

Theorem 2.2. Suppose A ∈ Cn×n is irreducible and has nonzero diagonal entries. If A
is not a GDDM, then there exists a positive diagonal matrix D such that mini ti(AD) ≥ 1.

Proof. Write M(A) = cI − B, where c > 0 and 0 ≤ B ∈ Rn×n. B is irreducible because
A is. By Perron-Frobenius theorem [3, 19], ρ(B) is a simple eigenvalue of B with the
associated eigenvector x > 0, i.e., Bx = ρ(B)x. Thus M(A)x = [c − ρ(B)]x. That A is
not a GDDM implies c ≤ ρ(B). It is not difficulty to verify that D = diag(x) is what we
need.

That A is irreducible in general cannot be removed from the conditions of this theorem.
Consider the following block diagonal matrix

A =

[
A1

A2

]
with irreducible GDDM A1,
and irreducible non-GDDM A2.

(2.2)

This A cannot be a GDDM. Otherwise there would exist a positive diagonal matrix D such
that maxi ti(AD) < 1. Partitioning D = diag(D1, D2) in the same way as for A, we find
maxi ti(A2D2) < 1 which would imply that A2 would be a GDDM, a contradiction. So A
is not a GDDM. But there exists no positive diagonal matrix D such that mini ti(AD) ≥ 1.
The latter can also be proved by a contradictory argument.

With additional conditions, we can extend Theorem 2.2 a little bit further.

Theorem 2.3. Suppose A ∈ Cn×n is reducible, has nonzero diagonal entries, and admits

ΠTAΠ =


A11 A12 . . . A1m

A22 . . . A2m

. . .
...

Amm

 ,

where Π is a permutation matrix, and all Aii are irreducible.

1. If A is a GDDM, then all diagonal blocks Aii are GDDMs. In other words, if one of
the diagonal blocks Aii is not a GDDM, then A cannot be a GDDM.

2. There exists a positive diagonal matrix D such that mini ti(AD) > 1 in any one of
the following two cases:

(a) all diagonal blocks Aii are not GDDMs and all M(Aii) are nonsingular;

(b) Amm is not a GDDM, M(Amm) is nonsingular, and none of Aim for 1 ≤ i ≤
m− 1 has zero rows.

6

Proof. Without loss of generality, we may simply takeΠ = In. Since each Aii is a principal
submatrix of A, item 1 is a corollary of [2, Lemma 2.6].

For item 2(a), by the proof of Theorem 2.2, there are positive vectors xi such that
M(Aii)xi < 0 for 1 ≤ i ≤ m. Let x = [xT1 , x

T
2 , . . . , x

T
m]T and D = diag(x). It can

be verified that M(A)x < 0 which implies AD is strictly off-diagonally dominant, i.e.,
mini ti(AD) > 1.

For item 2(b), by the proof of Theorem 2.2, there is a positive vector xm such that
M(Amm)xm < 0. Now pick arbitrarily positive vectors xi for 1 ≤ i ≤ m of sizes compatible
with Aii. Since |Aim|xm > 0 for 1 ≤ i ≤ m− 1, we can pick β > 0, sufficiently large such
that

M(Aii)xi −
m−1∑
j+1

|Aij |xj − β|Aim|xm < 0 for 1 ≤ i ≤ m− 1,

where |Aij | is interpreted as taking entrywise absolute values. Let x = [xT1 , x
T
2 , . . . , βx

T
m]T

and D = diag(x). It can be verified that M(A)x < 0 which implies mini ti(AD) > 1.

3 Existing algorithms

By the discussion we had in section 2, we know

1. if N+(A) = ∅, i.e., mini ti(A) ≥ 1, then A is not a GDDM, or

2. N+(A) = N, i.e., maxi ti(A) < 1, then A is a GDDM.

In the case when A is irreducible, we only need

min
i

ti(A) < max
i

ti(A) ≤ 1.

in order to claim that A is a GDDM. But for the general case when mini ti(A) < 1 <
maxi ti(A), i.e. A has some rows that are strictly diagonally dominant and some rows that
are strictly off-diagonally dominant, we cannot tell immediately whether such an A is a
GDDM or not by simply examining its diagonal entries and absolute-row sums ri(A) of
off-diagonal entries. Some nontrivial actions must be performed on A in order to make a
determination.

There are several existing iterative algorithms that were designed to do the job [1,
2, 14, 20, 23, 24]. Among them, the two algorithms in [1, 14] are perhaps the best in
efficiency and robustness. In this section, we will state and briefly discuss the algorithms
and later in section 6 we will compare our algorithms against them.

We remark that an H-matrix in [14] as well as in [1] was really meant a nonsingular
H-matrix, or equivalently a GDDM. To be consistent with our later algorithms, in Algo-
rithm 1 as well as other algorithms later we will always use the word “GDDM” rather
than “H-matrix” as in [1, 14].

Remark 3.1. In Algorithm 1 and those algorithms below, A is constantly updated in
place by positive diagonal matrices. If we denote A at entry and exit by Ain and Aout,
respectively, then, except for the trivial case at line 2, Aout = AinD, where D is the last
D at line 7. In case A is declared a GDDM, the last D at line 7 also makes that AD

7

Algorithm 1 [14, Algorithm B]

Given A ≡ (aij) ∈ Cn×n, this algorithm determines if A is or isn’t a GDDM.

1: ti = ti(A) for i ∈ N, and tmin = mini ti;
2: if tmin ≥ 1 or aii = 0 for some i ∈ N then
3: return that A is not a GDDM;
4: else
5: D = In, tmax = maxi ti;
6: while tmax ≥ 1 and tmin < 1 do
7: D1 = diag(ti), D = DD1, A = AD1;
8: ti = ti(A) for i ∈ N;
9: tmin = mini ti, tmax = maxi ti;

10: end while
11: if tmax < 1 then
12: return that A is a GDDM;
13: else if tmin ≥ 1 then
14: return that A is not a GDDM;
15: end if
16: end if

is strictly diagonally dominant. In case A is declared not a GDDM, either A has a zero
diagonal entry or A is off-diagonally dominant and the last D at line 7 makes that AD is
off-diagonally dominant. It is possible that the while-loop may be a dead loop for some
input, i.e., its loop condition cannot be unsatisfied, e.g., for the matrix (2.2). So in actual
implementation, one may set a maximum allowed number of the loop iterations to avoid
a dead loop situation. This last comment applies to all the algorithms in what follows.

Theorem 3.1 ([14]). Suppose Algorithm 1 terminates after a finite number of iterations.
Then

1. A is a GDDM if tmax < 1;

2. A is not a GDDM if tmin ≥ 1.

In 2002, L. Li [16] proposed a method for determining whether a given matrix is a
GDDM or not. In 2003, Ojiro, Niki, and Usui [20] gave another method for the same
task. But in 2006, Alanelli and Hadjidimos [1] came up with three counterexamples. The
method in [16] fails on two of them while and the algorithm in [20] fails on the third.
Specifically, the algorithm in [16] does not converge for

A =

 1 0 −0.5
−0.5 1 0
0 −2 1

 , B =

 1 0 −0.5
−2 1 0
0 −2 1

 , (3.1)

while the algorithm in [20] fails for

C =


1 −2 −1 0
−2 1 0 −1
0 −1/4 1 −1/2

−1/4 0 −1/2 1

 . (3.2)

8

It is easy to see A = M(A) = I −

 0 0 0.5
0.5 0 0
0 2 0

 =: I − E. It can be seen that E is

irreducible and has three eigenvalues ρ(E) exp(2πiι/3) for i = 0, 1, 2, all with the equal
absolute value ρ(E) = .7937, where ι is the imaginary unit. The power method on E will
diverge unless it starts with an eigenvector. The same can be said about the matrix B
here.

Later in section 6 we will revisit these three matrices. Having exposed the shortcomings
of these two algorithms, Alanelli and Hadjidimos [1] proposed the following Algorithm 2,
intended to improve them.

Algorithm 2 [1, Algorithm AH]

Given A ≡ (aij) ∈ Cn×n, this algorithm determines if A is or isn’t a GDDM.

1: A = [diag(A)]−1A and rmin = min
i∈N

ri(A);

2: if rmin ≥ 1 or aii = 0 for some i ∈ N then
3: return that A is not a GDDM;
4: else
5: D = In, rmax = max

i∈N
ri(A);

6: while rmin ≤ 1 and rmax ≥ 1 and rmin ̸= rmax do
7: D1 = diag(1+r1(A)

1+rmax
, . . . , 1+rn(A)

1+rmax
);

8: D = DD1, A = D−1
1 AD1;

9: rmin = min
i∈N

ri(A), rmax = max
i∈N

ri(A);

10: end while
11: if rmin > 1 then
12: return that A is not a GDDM;
13: else if rmax < 1 then
14: return that A is a GDDM;
15: else if rmax = rmin then
16: return that M(A) is singular and thus A is not a GDDM;
17: end if
18: end if

Alanelli and Hadjidimos [1] also established Theorem 3.2 Algorithm 2 which is essen-
tially the power method.

Theorem 3.2 ([1]). Suppose A ∈ Cn×n is irreducible.

1. Algorithm 2 always terminates, i.e., the while-loop from line 6 to line 10 will exit,
except possibly when det(M(A)) = 0;

2. If Algorithm 2 terminates, then its answer is correct.

Later in [2], Alanelli and Hadjidimos presented a two-stage approach to improve Al-
gorithm 2 for reducible A, basing on the fact that A ∈ Cn×n is not a GDDM if and only
if there exists at least one principal submatrix of A that is not a GDDM [2, Lemma 2.6].
The basic idea is to run Algorithm 2 for up to certain number of the while-loop itera-
tions, and if no determination can be made at the end, then it extracts out the principal

9

submatrix corresponding to indices {i : ri(A) ≥ 1} and check if the principal submatrix
is not a GDDM (by running the algorithm on the extracted principal submatrix). If it is
not, then A is not a GDDM (otherwise still no determination can be made). Presumably
this two-stage approach can help for some difficult irreducible non-GDDMs, too.

4 New algorithms

In this section, we propose three new algorithms. Theoretic convergence analysis to sup-
port the algorithms will be presented in the next section.

Recall our discussion in the first paragraph of section 3. Our intuitive idea is to
“correct” A iteratively, towards either diagonal dominance or off-diagonal dominance. To
implement this idea, we will propose a measure as a suggestive indicator to suggest when
the underlying matrix A can likely be made towards being diagonally dominant or off-
diagonally dominant.

By how ti(A) is defined, it is quite natural to interpret ti(A) as something that quanti-
fies the off-diagonal dominance in the ith row or, equivalently, 1/ti(A) as something that
quantifies the diagonal dominance of the row. Let

p = arg min
i∈N

ti(A), q = arg max
i∈N

ti(A). (4.1)

Along the same line, tp(A) and tq(A) quantify the least and the most off-diagonal domi-
nance among all n rows. Our indicator measure is then simply the product

tptq. (4.2)

When tptq ≤ 1, it is decided that A tilts towards being a generalized diagonally dominant
matrix, and as a result we will suppress the off-diagonal dominance of all or some off-
diagonally dominant rows; likewise when tptq > 1, it is decided that A tilts towards being
a generalized off-diagonally dominant matrix, and as a result we will suppress the diagonal
dominance of all or some off-diagonally dominant rows.

The next theorem shed lights on how suppression should be done.

Theorem 4.1. Suppose A ≡ (aij) ∈ Cn×n has nonzero diagonal entries and that N+(A) ̸=
∅ and N−(A) ̸= ∅. Let J ⊂ N and set B := AD, where D is diagonal with diagonal entries

D(j,j) =

{
tj(A), for j ∈ J,
1, for j ̸∈ J.

1. If J ⊆ N+(A), then

ti(B) ≤

{
1, for i ∈ J,
ti(A), for i ̸∈ J.

In particular, maxi ti(B) ≤ max{1,maxi ti(A)}.

2. If J ⊆ N−(A), then

ti(B) ≥

{
1, for i ∈ J,
ti(A), for i ̸∈ J.

In particular, mini ti(B) ≥ min{1,mini ti(A)}.

10

Proof. Suppose J ⊆ N+(A). Then for each i ∈ J, ti(A) < 1, and therefore for i ∈ J,

ti(B) =

∑
J∋j ̸=i tj(A)|aij |+

∑
j ̸∈J |aij |

ti(A)|aii|
≤

∑
J∋j ̸=i |aij |+

∑
j ̸∈J |aij |

ti(A)|aii|
= 1.

For i ̸∈ J,

ti(B) =

∑
j∈J tj(A)|aij |+

∑
J ̸∋j ̸=i |aij |

|aii|
≤

∑
j∈J |aij |+

∑
J̸∋j ̸=i |aij |

|aii|
= ti(A). (4.3)

This proves item 1. Item 2 can be proved in the same way.

This theorem can be understood in this way. In the case of item 1, the off-diagonal
dominance for all rows j ∈ J ⊆ N+(A) is suppressed, or equivalently the diagonal dom-
inance for these rows are increased, although possibly not strictly (examining (4.3) for
conditions for strict inequality there). In the case of item 2, the opposite outcome is
achieved. Thus together with the indicator measure (4.2), we propose our Self-Corrective
Iteration (SCI) detailed in Algorithm 3 for determining whether a given square matrix
is a GDDM or not and, as by-product, yielding a diagonal matrix D by which AD is
diagonally dominant in the case when A is a GDDM.

Remark 4.1. A few comments on Algorithm 3 are in order.

1. The input A is required to have no rows consisting of only 0 entries, excluding the
diagonal entries. This is to make sure all ti > 0 and in particular, tp > 0 always.
This condition is not restrictive in applications. In general, we can always preprocess
A by checking if A has some rows that, excluding their diagonal entries, contain only
0 entries. If there are some rows like that, we can symmetrically permute these rows
to the end as

ΠTAΠ =

[m n−m

m A11 A12

n−m 0 D̂

]
,

where D̂ is diagonal. Suppose that we are interested in solving some linear system
Ax = b. It can be seen that the system is now degenerated into a diagonal linear
system D̂x2 = b2 and another not-so-trivial one: A11x1 = b1 −A12x2. The diagonal
linear system is straightforwardly solved as accurate as it can be. The question is how
to solve the second one accurately. As we commented before, if A11 can be brought
into a strictly diagonally dominant matrix AD1 for some positive diagonal D1, then
this second linear system can be solve more accurately than without transforming
A11 to A11D1.

2. The arg min and arg max at lines 2, 6, 18 may not be unique. When that is the
case, simply picking one will do just fine.

3. The updating formula for γi at line 14 can be seen from that the absolute row sum
for the ith row is ∑

j∈J
tj |aij |+

∑
j ̸∈J

|aij | =
∑
j∈J

(tj − 1)aij +

n∑
j=1

|aij |.

11

Algorithm 3 Self-Corrective Iteration (SCI)

Given A ≡ (aij) ∈ Cn×n with, excluding the diagonal entries, no rows consisting of only 0
entries, this algorithm determines if A is or isn’t a GDDM.

1: γi =
∑n

j=1 |aij | and ti = γi/|aii| − 1 for i = 1, 2, . . . , n;
2: p = arg min

i∈N
ti;

3: if tp ≥ 1 or aii = 0 for some i ∈ N then
4: return that A is not a GDDM;
5: else
6: D = In, q = arg max

i∈N
ti;

7: while tp < 1 < tq do
8: if tp · tq ≤ 1 then
9: J = {i : 0 ̸= ti < 1};

10: else if tp · tq > 1 then
11: J = {i : ti > 1};
12: end if
13: for each j ∈ J do
14: γi = γi + (tj − 1) · |aij | for i = 1, 2, . . . , n;
15: D(j,j) = D(j,j) · tj , A(:,j) = tj ·A(:,j);
16: end for
17: ti = γi/|aii| − 1 for i = 1, 2, . . . , n;
18: p = arg min

i∈N
ti and q = arg max

i∈N
ti;

19: end while
20: if tp ≥ 1 then
21: return that A is not a GDDM;
22: else if tq < 1, or tq ≤ 1 and A is irreducible then
23: return that A is a GDDM;
24: else if tq ≤ 1 and A is reducible then
25: return that A may or may not be a GDDM;
26: end if
27: end if

4. As before, A is constantly updated in place by positive diagonal matrices. Denote
A at entry and exit by Ain and Aout, respectively. Then, except for the trivial case
at line 3, Aout = AinD, where D is the one at exit. When Algorithm 3 claims that
“A is a GDDM”, Aout may not appear as strictly diagonally dominant in the case
of an irreducible A.

5. In case when the cardinality of J is limited to 1, tj = 1 for j ∈ J at line 17 always.
The condition at line 22 can be satisfied only for tq = 1 and irreducible A.

6. If line 25 is executed, nd then at the time we must have tq = 1 and that A is
reducible. Aout is diagonally dominant but may not be strictly, and A may or may

12

not be a GDDM. This can be seen by running Algorithm 3 with input A being3 0 1
0 2 1
0 2 2

 , or

3 0 1
0 2 2
0 2 2


separately. The first one is a GDDM (it can be seen by multiplying the second column
by 3/4 for example) and the second one is no GDDM (since it is singular). Thus
further work is needed to make a definitive determination, e.g., by verifying if M(A)
is a nonsingular M-matrix or not along the lines we discussed after Theorem 2.1.

7. Conceivably and naturally, the two-stage approach in [2], as outlined at the end of
section 3, can be adopted here to improve this algorithm (and its variations to be
presented) for difficult reducible non-GDDMs such as the one in (2.2). Since the
adoption is rather straightforward, we will not dwell on it in this paper but leave it
to the reader.

The cost per iterative step of Algorithm 3 varies and depends on the cardinality of J
for each particular step. The larger the cardinality is, the bigger the cost will be. We now
introduce two variations of the algorithm, aiming at reducing per step cost. In the first
variation, we force J to contain just one index, i.e., p or q, depending on the situation, and
thus only one column is updated per iterative step. We name the resulting algorithm as

Algorithm 3a. In Algorithm 3, replace line 9 by J = {p}
and line 11 by J = {q}, respectively.

for future reference. In the second variation, we strive to balance out the cost and the
amount of suppression at lines 13-16 per iterative step. Notice that the amount of sup-
pression is proportional to relative difference of tj from 1. Therefore, it is reasonable to
limit J to contain those indices j such that tj relatively further away from 1. With this
guideline in mind, we formulate

Algorithm 3b. In Algorithm 3, replace line 9 by J = {i :
titq ≤ 1} and line 11 by J = {i : tpti > 1}, respectively.

5 Convergence analysis

In the following, we present a convergence analysis of Algorithm 3. We point out that
every convergence result in this section is valid for both Algorithms 3a and 3b, too. To
save spaces, we will not repeat them for the two variations.

Our first theorem reminds us of the Jacobi method for the symmetric eigenvalue prob-
lem: it produces the eigen-decomposition for any 2 × 2 symmetric matrix [7, 21] in one
rotation. Here it is shown that Algorithm 3 will tell whether a 2 × 2 matrix is a GDDM
in at most one iterative step. Note that a reducible A ∈ C2×2 is excluded from all eligible
inputs of Algorithm 3.

Theorem 5.1. For any irreducible A ≡ (aij) ∈ C2×2 with nonzero diagonal entries,
Algorithm 3 outputs a correct answer in at most one iterative step.

13

Proof. Without loss of generality, we may assume that A > 0 and

t1 =
a12
a11

≥ t2 =
a21
a22

.

Thus p = 2 and q = 1. If t2 ≥ 1 or t1 ≤ 1, then Algorithm 3 will skip lines 7-19 and go
straight to line 20 and give a correct answer.

Suppose that t1 > 1 > t2. Let t̃i denote the new ti (after one iteration). Then according
to t1t2 ≤ 1 or t1t2 > 1, we have

t̃1 =
a12a21
a11a22

= t1t2 ≤ 1, t̃2 = 1, or (5.1a)

t̃1 = 1, t̃2 =
a12a21
a11a22

= t1t2 ≥ 1. (5.1b)

Thus Algorithm 3 will stop with a correct answer: A is a GDDM in the case of (5.1a) or
A is not a GDDM in the case of (5.1b).

For the ease of presentation, we introduce a new set of notations to trace the iterations
in the algorithm. A(0) is the input A-matrix and D(0) = In, and A(k) and D(k) is the A-
and D-matrix in the k iterative loop after executing the for-loop at lines 13–16. Define,

accordingly, t
(k)
i for 1 ≤ i ≤ n, and pk and qk with p0 being the p at line 2 and q0 the q at

line 6.

Theorem 5.2. If Algorithm 3 terminates2, then its output is correct.

Proof. Suppose Algorithm 3 exits after m iterative steps. There are three possibilities: 1)
A is not a GDDM, 2) A is a GDDM, and 3) A may or may not be a GDDM.

1. If that A is not a GDDM is claimed, then possible exits are at line 4 and line 21.
If it is at line 4, then A(0) = A has either a 0 diagonal entry or N+(A) = ∅. By
Theorem 2.1(d,f), A is not a GDDM. If it is at line 21, then we have tpm ≥ 1, which
means N+(A

(m)) = ∅. By Theorem 2.1(a,d), A(m) and thus A is not a GDDM.

2. Suppose that A is a GDDM is claimed. Then the only possible exit is at line 23. We
have two cases: tqm < 1 or tqm = 1.

If tqm < 1, then for all i ∈ N, ti < 1, i.e., A(m) is strictly diagonally dominant. So
A(m) and thus A is a GDDM by Theorem 2.1(a).

If tqm = 1, then A is diagonally dominant. Since the case tpm ≥ 1 has been treated
earlier at line 21, we must have tpm < 1 when line 23 is reached. This means
N+(A

(m)) ̸= ∅. Since the input A is irreducible, A(m) is also irreducible. Thus A(m)

is an irreducible diagonally dominant matrix, and so it is a GDDM by Theorem 2.1(c)
and so is A by Theorem 2.1(a).

3. The third possibility comes from line 25 of Algorithm 3. See the last comment in
Remark 4.1.

This completes the proof.

2If it terminates, it terminates in a finite number of iterative steps.

14

The next two theorems are about the “monotonicity” property of the tp- and tq-
sequence generated by Algorithm 3. Note that the opposite to the condition of either

t
(k)
qk ≥ 1 in item 1 of Theorem 5.3 or t

(k)
pk ≤ 1 in item 2 of Theorem 5.3 leads to immediate

termination of the algorithm, and thus is welcome and not treated in the theorem.
Theorem 5.3 is in fact a simple corollary of Theorem 4.1.

Theorem 5.3. In Algorithm 3, suppose t
(k−1)
pk−1 < 1 < t

(k−1)
qk−1 .

1. If t
(k−1)
pk−1 t

(k−1)
qk−1 ≤ 1 and if t

(k)
qk ≥ 1, then t

(k−1)
qk−1 ≥ t

(k)
qk ;

2. If t
(k−1)
pk−1 t

(k−1)
qk−1 > 1 and if t

(k)
pk ≤ 1, then t

(k−1)
pk−1 ≤ t

(k)
pk .

This theorem implies that if t
(i)
pi t

(i)
qi ≤ 1 during many consecutive iterations, then the

corresponding t
(i)
qi is monotonically decreasing (possibly not strictly though). Likewise, if

t
(i)
pi t

(i)
qi > 1 during many consecutive iterations, then the corresponding t

(i)
pi is monotonically

increasing (again possibly not strictly).
Previously, we have mentioned that we would use tptq as the indicator for suggesting

how likely the input matrix A can be made towards being diagonally dominant or off-
diagonally dominant, and accordingly we should suppress the diagonal or off-diagonal
dominance of selected rows. But this indicator is only an indicator and it may predict
incorrectly. When that happens, i.e., after certain number of iterations, tptq may go
from above (below) 1 to below (above) 1. Experience often tells us that any wrong
prediction usually comes with waste of efforts in almost any circumstance. Luckily, what
we have here is a counterexample to this lesson of experience. For example, suppose

t
(i)
pi t

(i)
qi ≤ 1 during many consecutive iterations and therefore during each of these iterations,

A is “corrected” towards being diagonally dominant, and suppose at the end of these

consecutive iterations, t
(i)
pi t

(i)
qi becomes over above 1 and therefore A is “corrected” towards

being off-diagonally dominant instead for the step. The next theorem says that A after
this latest step is closer to being off-diagonally dominant than the one A before the many

consecutive iterations for which t
(i)
pi t

(i)
qi ≤ 1. In other words, the work that has been done

during these consecutive iterations correcting A towards being diagonally dominant is not
wasted, and somehow superstitiously the process knows that the indicator is making a
wrong prediction during these consecutive iterations and continuously pushes A towards
being off-diagonally dominant regardless.

Theorem 5.4 illustrates how tp and tq behave when tptq stays above (below) 1 and then
goes below (above) 1 and then comes back to above (below) 1.

Theorem 5.4. In Algorithm 3, suppose t
(i)
pi < 1 < t

(i)
qi for k − 1 ≤ i ≤ ℓ.

1. If t
(k−1)
pk−1 t

(k−1)
qk−1 ≤ 1, t

(i)
pi t

(i)
qi > 1 for k ≤ i ≤ ℓ− 1, and t

(ℓ)
pℓ t

(ℓ)
qℓ ≤ 1, then

t(k−1)
qk−1

≥ t(k)qk
> t(ℓ)qℓ

; (5.2)

2. If t
(k−1)
pk−1 t

(k−1)
qk−1 > 1, t

(i)
pi t

(i)
qi ≤ 1 for k ≤ i ≤ ℓ− 1, and t

(ℓ)
pℓ t

(ℓ)
qℓ > 1, then

t(k−1)
pk−1

≤ t(k)pk
< t(ℓ)pℓ

. (5.3)

15

1: r
i

tptq ≤ 1 r
j − 1

� -

b ` ` ` b b

r
j

r
j + 1

tptq > 1 r
k − 1

� - r
k

r
k + 1

tptq ≤ 1 r
ℓ− 1

� -

b ` ` ` b b
r
ℓ

r
ℓ+ 1

tptq > 1 r
s− 1

� - r
s

r
s+ 1

tptq ≤ 1�

b ` ` `
tq:

b ` ` ` b b b ` ` ` b b
tp:

Figure 1: Behavior of tp and tq as tptq goes through region above 1 and below 1 and back.
As soon as one of tp and tq touches 1, the iterative process stops with a claim that either
A is either a GDDM or not a GDDM or a definitive determination cannot be made.

Proof. First we prove (5.2). The first inequality there is a corollary of Theorem 5.3. Also
due to this theorem,

t(k)pk
≤ t(k+1)

pk+1
≤ · · · ≤ t(ℓ)pℓ

.

Therefore t
(k)
qk > 1/t

(k)
pk ≥ · · · ≥ 1/t

(ℓ)
pℓ ≥ t

(ℓ)
qℓ , as expected.

Next we prove (5.3). The first inequality there is a corollary of Theorem 5.3, too. Also
due to this theorem,

t(k)qk
≥ t(k+1)

qk+1
≥ · · · ≥ t(ℓ)qℓ

.

Therefore t
(k)
pk ≤ 1/t

(k)
qk ≤ · · · ≤ 1/t

(ℓ)
qℓ < t

(ℓ)
pℓ , as expected.

Combining Theorems 5.3 and 5.4, we draw Figure 1 to illustrate how tp- and tq-
sequences move during the iterations. In Figure 1, the line at the center corresponds to
1, tp is always below 1, and tq is always above 1. In the shaded area with opening-up, tq
is above the bottom-line but no longer monotonic, with no upper bound, and even goes
above its first value in the region (tptq > 1). However the first value of tq immediately
after the region is guaranteed smaller than the last value of tq right before the region.
Similar statements applies to the shaded area with opening-down for tp. The trend is that
tp moves up to 1 and tq moves down to 1. As soon as one of them touches 1, the iterative
process stops with a claim.

6 Numerical Experiments

Before we get into our numerical comparisons, we present Table 6.1 which displays the
flop counts per iterative step for each algorithm we presented so far, where it is assumed
that A is dense. It is clear that Algorithm 3a (for which nJ = 1) has the most favorable
flop counts, linearly in n, while Algorithms 1 and 2 have O(n2) flops. But since nJ
changes at the runtime for Algorithms 3 and 3b, their per step cost is not known a priori.
In Experiment 6.5 for random matrices, the average nJ for Algorithm 3 is about n/2 and

16

algorithm 1 2 3a 3b 3

flops 2n2 3n2 nJ × 3n+ 2n

Table 6.1: Flop counts per iterative step, where nJ is the cardinality of J and nJ = 1 for
Algorithm 3a always.

seems to be about 4 for Algorithm 3b on the testing matrices there. So for the experiment,
Algorithm 3 costs about 1.5n2 per step while it is 14n for Algorithm 3b.

Now we present our comparison results in terms of the numbers of iterations and
correctness of Algorithms 1, 2, 3, 3a, and 3b on five experiments. The first four are on
“difficult” matrices in the literature, and their dimensions are between 3 and 6. The fifth
experiment is for randomly generated dense and sparse matrices with dimension n = 1000.

Among all tests, Algorithm 3 always takes the fewest numbers of iterations. For the
large random matrices in Experiment 6.5, we calculate that Algorithm 3b actually use the
fewest flops overall.

Experiment 6.1. This first experiment is on two matrices A and B given in (3.1) from
[1]. Our algorithms work beautifully on both matrices while the algorithm in [16] fails
(see [1]). This A is also the testing matrix for Example 1 in Experiment 6.4, and B is the
one for Example 2 there. All Algorithms 1, 2, 3, 3a, and 3b generate the correct claim.
See Examples 1 and 2 in Table 6.2 for detail. 3

Experiment 6.2. In this experiment, we show that Algorithm 1 may malfunction, i.e.,
producing an erroneous claim. Consider the matrix

A =

 2 −1 −0.5
−1 2 −1
−1.5 −3 3.5

 , B =

 2 −1 0
−2 7 −2
−2 −2 1

 .

A is a slight modification of [1, Example 7] in changing its (3, 3)th entry from −7/6 there
to 3.5 here. Test on [1, Example 7] will be reported in Table 6.2. It can be verified that
this A is singular, and hence it cannot be a GDDM. But if Algorithm 1 is applied to A,
at the end of 35th iteration, it is claimed that A is a GDDM. On the other hand, A is
correctly identified as not a GDDM by all other algorithms. For B, all algorithms reach
the same conclusion that B is not a GDDM, but Algorithms 1 and 2 take many more
iterations than Algorithm 3 and its variations do, as shown in the following table

algorithm 1 2 3 3a 3b

A - 33 31 32 31
B 28 29 3 3 3

where “-” indicates that Algorithm 1 fails to make a correct determination. 3

Experiment 6.3. This experiment is for the 6× 6 matrix

A =



1 0.01 0.02 0.01 0.03 0.01
0.05 1 0.10 0.02 0.01 0.01
0.01 0.01 1 1.01 0.01 0.01
0.01 0.03 1.002 1 0.01 0.02
0.02 0.01 0.02 0.01 1 0.10
0.07 0.01 0.01 0.01 0.01 1


17

Example [1] Alg. 1 Alg. 2 Alg. 3 Alg. 3a Alg. 3b GDDM?

1 3 4 1 2 1 Yes
2 1 4 1 1 1 No
3 1 2 1 2 1 No
4 5 6 4 11 10 Yes

5(i) 7 8 7 7 7 Yes
5(ii) 8 9 8 8 8 No
6(i) 31 32 16 30 21 Yes
6(ii) 36 37 19 26 19 No
7 - 33 32 33 32 No
8 1 2 1 1 1 Yes
9 0 0 0 0 0 No

Table 6.2: Experiment 6.4: the numbers of iterations on examples in [1, section 5]

taken from [2]. Algorithms 1 and 2 need 14 and 15 iterations, respectively, to reach the
conclusion that A is not a GDDM, while Algorithms 3, 3a, and 3b take 5, 11, and 6
iterations, respectively. 3

Experiment 6.4. In the fourth experiment, we compare the numbers of iterations of
the five algorithms on all the examples in [1, section 5]. The outcomes are given in
Table 6.2, where the second to sixth columns starting from the second row downwards
list the numbers of iterations by the respective algorithms to reach the conclusions in the
seventh column3. Table 6.2 clearly demonstrates that Algorithm 3 uses the least numbers
of iterations among all. 3

Experiment 6.5. In this experiment, we perform random testing on both dense and
sparse matrices with n = 1000. We basically generate Z-matrices and make sure that they
are either M-matrices (thus GDDMs) or not M-matrices (thus not GDDMs). Specifically,
dense GDDMs are generated by, in MATLAB notation,

A = abs(randn(n)); s = max(abs(eig(A))); A = (s+ .01) ∗ eye(n)− A;

Change s+.01 to s-.01 for dense non-GDDMs. Similarly, sparse GDDMs are generated
by

A = abs(sprandn(n, n, .05)); s = max(abs(eig(full(A)))); A = (s+ .01) ∗ speye(n)− A;

Again change s+.01 to s-.01 for sparse non-GDDMs. For each type, we generate 10
random matrices to test. Table 6.3 lists the average numbers of iterations of each algorithm
on the 10 random matrices for each type. It clearly shows that Algorithm 3 consistently

3The matrix for [1, Example 8] is A =

[
1+i

√
3

4
2
√
2(1 + i)√

2(1−i)
8

2(1− i
√
3)

]
. It can be verified that M(A) =[

1
2

−4
− 1

4
4

]
which is a nonsingular matrix, but it was claimed that “M(A) IS SINGULAR” in [1]. One

plausible explanation would be that A was misprinted in [1] since in our testing, Algorithm 2 ran correctly
on this example.

18

A Alg. 1 Alg. 2 Alg. 3 Alg. 3a Alg. 3b GDDM?

dense 13.0 14.0 11.5 3022.5 989.4 Yes
dense 13.1 14.1 11.1 3092.8 997.3 No
sparse 13.5 14.5 11.9 3564.3 1112.0 Yes
sparse 13.9 14.9 11.7 4801.8 1124.5 No

Table 6.3: Experiment 6.5: the numbers of iterations on random examples over 10 runs
for each matrix type

A Alg. 3 Alg. 3a Alg. 3b

dense(Y) 1.89 · 107 1.51 · 107 1.27 · 107

dense(N) 1.75 · 107 1.54 · 107 1.37 · 107

sparse(Y) 1.33 · 107 1.51 · 107 1.19 · 107

sparse(N) 1.38 · 107 2.03 · 107 1.20 · 107

Table 6.4: Experiment 6.5: the average total costs in flops for each matrix type

outperforms Algorithm 1 and 2 in the numbers of iterations taken for decision-making.
Since Algorithm 3 does not update all columns per iteration, unlike Algorithms 1 and 2,
its per cost step, estimated at 1.5n2 for the dense case (average nJ ≈ n/2), is no higher
than the latter two. Therefore Algorithm 3 uses fewest flops as well. On the other hand,
the average numbers of iterations by Algorithms 3a and 3b are substantially larger than
the other three algorithms. But we argue that these large average numbers of iterations
can be deceptive in the sense that they do not necessarily translate into Algorithms 3a
and 3b being more expensive. This is due to their low per step cost because of smaller nJ
(see Table 6.1 for dense matrices). To get a sense of how small nJ can be, we list in the
following table the average numbers nJ by Algorithms 3a and 3b, where “Y” and “N”
indicates that the corresponding columns are for GDDMs or non-GDDMs.

algorithm dense(Y) dense(N) sparse(Y) sparse(N)

3 547.2 525.7 503.3 528.0
3b 3.6 3.9 3.9 3.9

By data in this table, Table 6.1, and Table 6.3, we can calculate the average total costs
in flops for Algorithms 3, 3a, and 3b for the dense case. For the sparse case, we may
estimate the average number of nonzero entries per column as

√
.05n and thus we can use

this simple model
(2 +

√
.05)nJ n+ 2n

for average flops per iterative step, where .05 is the sparse density we used in generating
the sparse examples. Now we can calculate the average total costs in flops in Table 6.4.
According to this table, Algorithm 3b outperforms Algorithms 3 and 3a. Moments ago,
we argued that Algorithm 3 is cheaper than Algorithms 1 and 2. Putting all together,
we conclude that Algorithm 3b stands out on the top in this random matrix experiment.
3

We observed that often matrices AD at exit by Algorithms 3 and 3b are strictly
(off-)diagonally dominant, i.e., either mini ti(AD) > 1 or maxi ti(AD) < 1 while those

19

by Algorithm 3a are just (off-)diagonally dominant , i.e., either mini ti(AD) ≤ 1 or
maxi ti(AD) ≤ 1 with equality.

7 Concluding remarks

We presented three self-corrective algorithms for determining if a square matrix is a gen-
eralized strictly diagonally dominant matrix or not. Although they share the same goal,
by design Algorithms 3 and 3a are opposite in per step cost: the former costs more due
to that all possible columns which, if updated, can help to reduce maxi ti(A) or increase
mini ti(A) are updated, while the latter costs less due to choosing just one significant col-
umn to update among all possible columns which, if updated, can help to achieve the same
objective. Algorithm 3b strikes a balance between the two. Consequently, as we observed
in numerous tests, Algorithms 3 takes the fewest iterations among our three algorithms,
Algorithm 3a takes the most, and Algorithm 3b takes the number in between. Because of
the differences in the per step cost, the number of iterations is no longer a good sugges-
tion in telling which algorithm is cheaper and which is more expensive. For the random
testings in Experiment 6.5, we calculated that Algorithm 3b uses the fewest flops among
the three.

We compared our algorithms against two existing ones from [1, 14] – Algorithms 1 and
2. They are perhaps the most efficient and robust iterative methods in the literature. We
note that per step cost by Algorithm 3 is always less than those of these two algorithms
and yet in all our tests it took fewer iterations than any one of them.

Our analysis reveals that our algorithms have an elegant convergence behavior as
illustrated by Figure 1. But the analysis has its unsatisfactory part: no answer is provided
as to whether our algorithms will terminate in finitely many steps. We point out that all
our numerical tests including those not reported here terminated successfully.

The definition of GDDM and Theorem 2.2 guarantee that the exit conditions in our
algorithms are achievable, except possibly for certain reducible GDDM such as the one
in (2.2). For the types of reducible GDDMs such as the ones in Theorem 2.3(2), the exit
conditions can be satisfied, however. Hence extra care must be taken in dealing with
difficult reducible matrices A for which the two-stage approach in [2] can be helpful (see
our discussion at the end of section 3).

References

[1] M. Alanelli and A. Hadjidimos. A new iterative criterion for H-matrices. SIAM J. Matrix
Anal. Appl., 29(1):160–176, 2007.

[2] M. Alanelli and A. Hadjidimos. A new iterative criterion for H-matrices: the reducible case.
Linear Algebra Appl., 428(11-12):2761–2777, 2008.

[3] Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sci-
ences. SIAM, Philadelphia, 1994. This SIAM edition is a corrected reproduction of the work
first published in 1979 by Academic Press, San Diego, CA.

[4] Rafael Bru, Isabel Gimnez, and Apostolos Hadjidimos. Is A ∈ Cn,n a general H-matrix?
Linear Algebra Appl., 436(2):364–380, 2012.

20

[5] M. Dailey, F. Dopico, and Q. Ye. A new perturbation bound for the LDU factorization of
diagonally dominant matrices. SIAM J. Matrix Anal. Appl., 35(3):904–930, 2014.

[6] M. Dailey, F. Dopico, and Q. Ye. Relative perturbation theory for diagonally dominant
matrices. SIAM J. Matrix Anal. Appl., 2014. to appear.

[7] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[8] Miroslav Fiedler. Special Matrices and Their Applications in Numerical Mathematics. Dover
Publications, Inc., Mineola, New York, 2nd edition, 2008.

[9] Tai-Bin Gan and Ting-Zhu Huang. Simple criteria for nonsingular H-matrices. Linear Algebra
Appl., 374:317–326, 2003.

[10] Masunori Harada, Mastaka Usui, and Hiroshi Niki. An extension of the criteria for generalized
diagonally dominant matrices. Intern. J. Comput. Math., 60(1-2):115–119, 1996.

[11] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, 1991.

[12] Tin-Zhu Huang. A note on generalized diagonally dominant matrices. Linear Algebra Appl.,
225:237–242, 1995.

[13] P. Koev and F. Dopico. Perturbation theory for the LDU factorization and accurate compu-
tations for diagonally dominant matrices. Numer. Math., 119:337–371, 2011.

[14] Toshiyuki Kohno, Hiroshi Niki, Hideo Sawami, and Yi-ming Gao. An iterative test for H-
matrix. J. Comput. Appl. Math., 115(12):349–355, 2000.

[15] Bishan Li, Lei Li, Masunori Harada, Hiroshi Niki, and Michael J. Tsatsomeros. An iterative
criterion for H-matrices. Linear Algebra Appl., 271(13):179–190, 1998.

[16] Lei Li. On the iterative criterion for generalized diagonally dominant matrices. SIAM J.
Matrix Anal. Appl., 24(1):17–24, 2002.

[17] Lei Li, Hiroshi Niki, and Morito Sasanabe. A nonparameter criterion for generalized diagonally
dominant matrices. Intern. J. Comput. Math., 71(2):267–275, 1999.

[18] Jianzhou Liu and Anqi He. An interleaved iterative criterion for H-matrices. Applied Mathe-
matics and Computation, 186(1):727–734, 2007.

[19] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, 2000.

[20] Keiko Ojiro, Hiroshi Niki, and Masataka Usui. A new criterion for the H-matrix property. J.
Comput. Appl. Math., 150(2):293–302, 2003.

[21] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.

[22] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. SIAM J. Matrix Anal. Appl.,
2014. to appear.

[23] Richard S. Varga. On recurring theorems on diagonal dominance. Linear Algebra Appl.,
13(12):1–9, 1976.

[24] R.S. Varga. Matrix Iterative Analysis. Springer-Verlag, Berlin, 2000.

21

	a.pdf
	Slide Number 1

