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Abstract 
According to our observation of turbulence generation, all small length scales are generated by 

shear layer instability. The size of small vortices should be determined by the smallest stable 

shear layer, e.g. smallest shear layer like laminar sub-layer in the wall bounded flow. This paper 

provides a new estimation of the smallest length scale by using the shear layer stability analysis, 

which is different from Kolmogorov micro scales, or 3/40(Re )−   

 

I. Introduction      
 

Classical turbulence theory about vortex chains was given by Richardson. He has a famous poem that 

“Big whirls have little whirls, which feed on their velocity; And little whirls have lesser whirls, and so on 
to viscosity in the molecular sense.” However, the vortex chain generated by large vortex breakdown is 

never observed. As shown by our DNS, turbulence has different size of vortices from the large to small. 

However, they are all generated by shear layer instability (K-H type) without exception and no vortex 

breakdown is observed. In fact, no one ever observed the eddy cascade by instrument or computation. 
 

The Richardson energy cascade and vortex breakdown was accepted by Kolmogorov and “vortex 

breakdown’ as the foundation of Kolmogorov’s hypotheses. The famous Kolmogorof scale is given by 

Russian Mathematician Kolmogorof in 1941. The scale is obtained by dimensional analysis. Assume the 

velocity and length related to the largest eddy are L and U , ν  is the viscosity, ε is the kinetic energy, 

the velocity and length related to the smallest eddy are  V and η , we will have the energy relation: 
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L

η
represents the ratio of the Kolmogorov micro scale over the macro scale, which is very small, e.g. if 

8Re 10= , the ratio could be 
610

L

η −= which cannot be resolved by any modern computers for a 3-D 

DNS.  

 

Kolmogorov’s hypothesis is based on dimensional analysis and seems to have no possibility to be 
incorrect.  However, there are still some questions: 

1) If the Kolmogorov micro scale is generated by “large vortex breakdown”, it needs 20 cycles to 

break down for 
6Re 10= . However, no one ever observed such 20 generations of vortex 

breakdown cycles, even a single one. 

2) When the Reynolds number becomes very large the Kolmogorov’s small scale becomes 

extremely small. However, no one observed the real Kolmogorov micro scales either by 
experiment or DNS. 

We believe the Kolmogorov’s hypothesis and his micro-scale need to be revisited. 

 

                                        II Shear Layer Instability and Turbulence Small Scales 
 

According to our DNS observation, all small vortices are generated by shear layer instability, the smallest 

scale should be the smallest stable shear layer. We have done some 1-D and axial-symmetric shear layer 
stability analysis and found that even we have the inflection points, the shear layer still could be stable if 

the shear strength or 
u

z

∂

∂
is not large enough.  
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 (a) Shear layer with inflection point (u1)        (b) Rotational part   (u2)                (c) Shear part  (u1-u2) 

Figure 1: Shear layer velocity decomposition 

We pick a typical 1-D shear layer described by following functions: )tanh(1 byaU =
�

                                                                                                                             

As we know, the existence of inflation point makes the velocity profile to be unstable for inviscid fluid 

flow. However, Table 1. gives the results of ci  (positive is unstable and negative is stable) for the 

satiability analysis for standard O-S equation at different values of b for the velocity profile U=a  tanh(by) 

at Re=100 and a=1.43. It shows that although there is an inflation point, where the second derivative 
equals 0, for every curve, with relative small value for b the flow could be stable. Thus, the conclusion 

can be made that the stability is not only related to the inflation point of the velocity profile but also 

related to the slope of the curve ( the curve is steeper with larger b) for viscous flow. To make a flow be 
unstable, the existence of inflation point is just a necessary condition, and the velocity profile should be 

steep enough. The numerical study is carried out in an axis-symmetric coordinate. 
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b 0.1 0.2 0.6 0.9 1.0 2.0 3.0 4.0 

ci <0 <0 <0 <0 <0 0.1186 0.3965 0.5517 

Table 1. Results of ci at different values of b for the velocity profile U=1.43 tanh(b*y) at Re=100, 

α=1.0 

 

 
 According to our observation, the size of the smallest stable shear layer should be considered as the 

smallest scale. 

 

For any wall bounded turbulent flow, there is always a laminar sub-layer which is the smallest stable 
shear layer:   
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On the other hand, Kolmogorov’s smallest scale was derived by dimensional analysis but has not been 

confirmed by any experiment or computation yet when Reynolds number is large, which is the 
assumption given by Kolmogorov. The serious weakness of classical theory given by Richardson and 

Kolmogorof is that nobody ever observed. As a roughly estimate, we need 20 vortex breakdowns to get 

Kolmogorov scale, but we even cannot see a single one. As the experiment tools are so powerful and the 
visualization technology is so advanced nowadays, it is very hard to believe we still cannot detect the 

vortex breakdown process. The only conclusion we can believe is that the classical theory on turbulence 

generation may be incorrect and   Kolmogorov’s smallest scale may not exist. 
 

                                                    III A Counterexample to Kolmogorov Scale 

 

3.1 Tip vortex relaminarization – a contradiction to classical turbulence theory 

      As reported by both experiment and large eddy simulation
 
(Cai te al, 2008; Figures 2 and 3), the tip 

vortex was developed on a 3-D airfoil and becomes turbulent on the airfoil surface. According to the 

classical trubulence theory, the tip vortex should be more turbulent and has smaller length scales as 

leaving the airfoil surface and traveling to the free stream since the Reynolds number becomes larger. As 

Reynolds number becomes larger, the length scale will be smaller according to Kolmogorov’s theory and 

many smaller vortices will be found by “vortex breakdown” according to Richardson’s vortex cascade. 

Unfortunately, the observation by both experiment and LES shows the oposite. The flow is relaminarized 

and all small length scales disappear. This example strongly oposes classical turbulence theory and 

strongly supports our new theroy that is “turbulence is not generated by “vortex breakdown” but by 

“shear layer instability” since strong shear layers disapper when the tip vortex left the airfoil surface.   

This is apparently an counterexample to Kolmogorov’s miscroscale since we find the smallest scale 

becomes 1 as the flow re-laminarized. According to Kolmogorov’s miscroscale hypothesis, 

3

4Re
L

η −

= , 

the Reynolds number should be 1, which is impossible according to the definition of Reynolds number.  
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Figure 2: Instantaneous field of axial vorticity: Iso-surface of  vorticity component ωx=3 

 

Figure 3. Contours of streamwise vorticity ω
x in cross planes at different locations (Tip vortex left the 

wall surface at x=1.00)  

 

3.2 Important conclusions 

Although Kolmogorov’s micro scale is derived based on dimensional analysis, there is no evidence by 

experiment or DNS to confirm Kolmogorov’s vortex breakdown and micro scale (for smallest vortex, 

Re=1.) According to our observation, all small scales are generated by shear layer instability, the smallest 

length scale should be the smallest stable shear layer.   
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It is hard to prove a theory correct, but a counterexample is good enough to overthrow a theory. The tip-

vortex is a counterexample to Kolmogorov’s micro scale hypothesis. 

 

3.3 Future work 

More detailed description of the DNS results and more deep analysis will be given in the final AIAA 

paper.   
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