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Abstract 
The Boussinesq eddy viscosity assumption (1872) is still widely used in turbulence modeling 

although Reynolds stress transport model is considered. In this paper, we use DNS to study the 

Boussinesq assumption and found the Boussinesq eddy viscosity assumption is lack of scientific 

foundation. It may be viable in the second quarter (ejection as u’<0 and w’>0) and fourth quarter 

(sweep as u’>0 and w’<0) but fails even in sign which is not adjustable in the first quarter and third 

quarter. A counterexample is given for the case of high speed flow passing a micro vortex generator 

(MVG), where the flow separation appears. Both computation and experiment show there is no 

direct relation between Reynolds stress and the mean velocity gradients. We will try to use the DNS 

data to develop model for Reynolds stress. 

 

I. Introduction 

 
The Reynolds averaged Navier-Stokes (RANS) equations are not self-closed and have many 

undetermined terms which are called Reynolds stress. These terms must be estimated by so-called 

turbulence models. Although the transport equations for Reynolds stress have been developed, they are 

not only more expensive, but also have to use additional models. Therefore, most turbulence models are 
still based on the Boussnesq eddy viscosity assumption, in which the Reynolds stress is directly co-related 

to the gradient or strain of the mean velocity. These eddy viscosity models with adjustable empirical 

coefficients like mixed-length, , , , .k k k etcε ω− − −   models are in general successful for flat plate and 

simple flow. The foundation of these models is based on the assumption that turbulence is a mixing 

process. This is partially correct since in turbulent flow, the rotation is dominant and so-called ejection 

and sweeps are widely observed. There must be some co-relation between flow fluctuation and gradient 
of mean flow gradient. However, as our DNS study showed, the real turbulent flow has much complicated 

vortex structure and is not easy to simply build up a simple relation between flow fluctuation (Reynolds 

stress in a time-average sense) and the mean flow gradient. In practice, these eddy viscosity models 

always fail for swirling flow and flow with separation. In this paper, we just provide some 
counterexamples to show the Boussinesq eddy viscosity assumption is lack of scientific foundation and 

further more accurate turbulence models are needed. These new turbulence models should be based on the 

vortex package structure and relative motion between these vortex packages. These new models can be 
obtained from DNS data base since u’, v’, w’ p’ are all obtained by DNS computation. These are the goal 

of our DNS study which is to develop more accurate turbulence model for general flow including the 

swirling flow and separated flow. 
 

 

II Eddy Viscosity Models 

 

2.1 Two Dimensional  RANS Governing Equations 

 

The time-averaging process, of obtaining mean quantities, is applied on the incompressible, two-

dimensional equations of continuity and the conservative form of momentum and energy that produces 
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the time-averaged governing equations or more popularly known as the Reynolds-Averaged Navier-

Stokes (RANS) equations yields 
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where u , v , p , T  are mean values and u′, v′, p′, T′ are turbulent fluctuations. The term k / ρ Cp 

in equation (4) is the thermal diffusivity α of the fluid. The equations above are similar to those 

formulated for laminar flows, except for the presence of additional terms of the form 'b'a . As a 

result, we have three additional unknowns (in three dimensions, we will have nine additional 

unknowns), known as the Reynolds stresses, in the time-averaged momentum equations. 

Similarly, the time-averaged temperature equation shows extra terms 'T'u  and 'T'v .  

 The time-averaged equations can be solved if the Reynolds stresses and extra temperature 

transport terms can be related to the mean flow and heat quantities.  

2.2 Boussinesq Eddy Viscosity Assumption 

It was proposed by Boussinesq (1872) that the Reynolds stresses could be linked to the mean 

rates of deformation.  
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The right hand side is analogous to Newton’s law of viscosity, except for the appearance of the 

turbulent or eddy viscosity µT and turbulent kinetic energy k.  

 In Equation (5) the turbulent momentum transport is assumed to be proportional to the mean 

gradients of velocity. Similarly the turbulent transport of temperature is taken to be proportional 

to the gradient of the mean value of the transported quantity. In order words, 

 

 
y

T
'T'v

x

T
'T'u TT

∂

∂
=−

∂

∂
=− ΓΓ ρρ   (6) 

 

where ΓT is the turbulent diffusivity. Since the turbulent transport of momentum and heat is due 

to the same mechanisms – eddy mixing – the value of the turbulent diffusivity can be taken to be 

close to that of turbulent viscosity µT. Based on the definition of the turbulent Prandtl number PrT, 

we obtain 
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Experiments have established that this ratio is often nearly constant. Most CFD procedures 

assume this to be the case and use values of PrT around unity.  

2.3 k-ε model 

 Since the complexity of turbulence in most engineering flow problems precludes the use of 

any simple formulae, it is possible to develop similar transport equations to accommodate the 

turbulent quantity k and other turbulent quantities one of which is the rate of dissipation of 

turbulent energy ε. Here we just introduce the form of a typical two-equation turbulence model 

that is commonly used in handling many turbulent fluid engineering problems, the standard k-ε 

model by Launder and Spalding (1974). 
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 Some preliminary definitions are required first. The turbulent kinetic energy k and rate of 

dissipation of turbulent energy ε can be defined and expressed in Cartesian tensor notation as 
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From the local values of k and ε, a local turbulent viscosity µT can be evaluated as 
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ρ
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2
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T =   (7) 

 

and the kinematic turbulent or eddy viscosity is denoted by νT = µT /ρ. 

  By substituting the Reynolds stress expressions in equation (5) and the extra temperature 

transport terms in equation (6) into the governing equations (1), (2), (3) and (4), and removing the 

overbar that is by default indicating the average quantities, we obtain 
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The term ν/Pr appearing in the temperature equation (11) is obtained from the definition of the 

laminar Prandtl number that is already defined in equation (1) as Pr = ν/α where α = k/ρ Cp. 

Interestingly, the time-averaged equations above have the same form as those developed for the 

laminar equations except for the additional turbulent viscosity found in the diffusion and non-

pressure gradient terms for the momentum equations and also found in the diffusion term for the 

energy equation. Hence, the solution to turbulent flow in engineering problems entails greater 

diffusion that is imposed by the turbulent nature of the fluid flow.   

 The additional differential transport equations that is required for the standard k-ε model, for 

the case of a constant fluid property and expressed in non-conservation form, are  
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where the production term P is formulated as 
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and the destruction term D is given by ε. The physical significance of the above equations is: the 

rate of change and the advection transport of k or ε equals the diffusion transport combined with 

the rate of production and destruction of k or ε. The equations contain five adjustable constants 

Cµ, σk, σε, Cε1 and Cε2. These constants have been arrived at by comprehensive data fitting for a 

wide range of turbulent flows (Launder and Spalding, 1974): 

 Cµ  = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92.  
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The production and destruction of turbulent kinetic energy are always closely linked in the k-

equation (12). The dissipation rate ε is large where the production of k is large. The model 

equation (12) assumes that the production and destruction terms are proportional to the 

production and destruction terms of the k-equation. Adoption of such terms ensures that ε 

increases rapidly if k increases rapidly and that it decreases sufficiently fast to avoid non-physical 

(negative) values of turbulent kinetic energy if k decreases. The factor ε / k in the production and 

destruction terms makes these terms dimensionally correct in the ε-equation (13). There are many 

other eddy viscosity models which are widely used in industry. In general, these models work 

well for flat plate and other simple flow but meet barrier when the flow separation appears and 

for swirling flow. 

2.4 The Limitation of Eddy Viscosity Assumption  

The eddy viscosity assumption given by Boussinesq  
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v
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    is just assumption and does not have strict mathematical proof. On the other hand, by using 
adjustable empirical coefficients, the eddy viscosity may work well.  

 
Figure 1: Flow fluctuations in different quarters 

 

Apparently, the sign of Bousnessiq assumption coincides with the mean velocity gradient (Figure 1) 
in a boundary layer with Blasius type solution (Figure 2) which the perturbations are pretty much 

located in the second quarter (ejection) or the fourth quarter (sweeps). Any perturbations located in the 

first or third quarters directly violate the Bousnessiq assumption and become a counterexample. 
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Figure 2: Blasius solution  

 

However, in turbulent boundary layer, the instantaneous velocity or even the mean velocity could be 
very complicated. For a very simple transitional flow on a flat plate, a velocity and its derivatives profile 

is givenis Figure 3b, which is located at a cross vortex ring section. Although the perturbations are 

dominated with ejection (second quarter) and sweeps (Fourth quarter,) the first order derivative of the 

streamwise velocity, 0
u

z

∂
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in the middle position of the section. This directly opposes the Bousnessiq’s assumption,    
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v
v  because the left hand side is positive but the right hand side is negative 

assuming 
T

µ must be positive. This clearly shows that the Bousnessiq assumption is lack of scientific 

foundation and even can be violated by very simple flat plate flow.  

 
(a) Vortex rings                                    (b) velocity profile and derivatives cross the ring 

            Figure 3:  Velocity profile and derivatives with inflection points in a boundary layer 

 2.5 High Speed Counterexample to Bousnessiq Eddy Viscosity Assumption 

 

A supersonic flow passing a micro vortex generator (MVG) is studied by high order LES and 

experiment with 3-D PIV technology (Figure 4.) The two approaches are compared very well (Sun et al, 

2013.) The LES results are well validated by experiment. Figure 5(a) depicts the mean flow velocity 
profile after MVG and Figure 5(b) gave the corresponding Reynolds stress. Let us take a look at the 

section of x/h=22.8and check y/h=2.5,both ' 'u v and 
u

y

∂
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assumption: ' ' T
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ρ µ
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v
v cannot stand unless 0

T
µ < which is impossible. From the two 

counterexamples described above, we can easily find that there is no direct co-relation between Reynolds 

stress and the gradient of mean flow velocity. 
  

 

                        Figure 4: 
2' /u U∞< > in supersonic flow passing MVG 

   
(a)                                                           (b) 

FIG. 5: Comparison of profiles of    Stremwise velocity U  and                       at x/h = 22.8  

 

 

 

III Important Conclusions 

 

The Bousnessiq eddy viscosity assumption is lack of scientific foundation and even can be violated by 

a simple flat plate flow. This assumption will fail with swirling flow and flow with separation as shown 
by some counterexamples for high speed flow passing micro vortex generator. New turbulence model 

based on the DNS data set is needed.  

IV Future work 

We must develop new turbulence model based on DNS data base. More detailed description of the 

DNS results and analysis will be given in the final AIAA paper.   
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