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Abstract

The hyperbolic quadratic eigenvalue problem (HQEP) was shown to admit the
Courant-Fischer type min-max principles in 1955 by Duffin and Cauchy type inter-
lacing inequalities in 2010 by Veselić. It can be regarded as the closest analogue
(among all kinds of quadratic eigenvalue problems) to the standard Hermitian eigen-
value problem (among all kinds of standard eigenvalue problems). In this paper, we
conduct a systematic study on HQEP both theoretically and numerically. In the theo-
retic front, we generalize Wiedlandt-Lidskii type min-max principles and, as a special
case, Ky-Fan type trace min/max principles and establish Weyl type and Mirsky type
perturbation results when an HQEP is perturbed to another HQEP. In the numer-
ical front, we justify the natural generalization of the Rayleigh-Ritz procedure with
the existing and our new optimization principles and, as consequences of these princi-
ples, we extend various current optimization approaches – steepest descent/ascent and
nonlinear conjugate gradient type methods for the Hermitian eigenvalue problem – to
calculate few extreme quadratic eigenvalues (of both pos- and neg-type). A detailed
convergent analysis is given on the steepest descent/ascent methods. The analysis
reveals the intrinsic quantities that control convergence rates and consequently yields
ways of constructing effective preconditioners. Numerical examples are presented to
demonstrate the proposed theory and algorithms.
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1 Introduction

It was argued in [26] that the hyperbolic quadratic eigenvalue problem (HQEP) is the
closest analogue of the standard Hermitian eigenvalue problem when it comes to the
quadratic eigenvalue problem (QEP)

(λ2A+ λB + C)x = 0. (1.1)

In many ways, both problems share common properties: the eigenvalues are all real, and
for HQEP there is a version of the min-max principles [12, 1955] that is very much like
the Courant-Fischer min-max principles.

One source of QEPs (1.1) is dynamical systems with friction, where A, C are associ-
ated with the kinetic-energy and potential-energy quadratic form, respectively, and B is
associated with the Rayleigh dissipation function [16, 65]. When A, B, and C are Hermi-
tian, and A and B are positive definite and C positive semidefinite, we say the dynamical
system is overdamped if

(xHBx)2 − 4(xHAx)(xHCx) > 0 for any nonzero vector x.

Overdamped dynamical systems are common in elevator and car braking systems1. A
HQEP is slightly more general than an overdamped QEP in that B and C are no longer
required positive definite or positive semidefinite, respectively. However, a a suitable shift
in λ can turn a HQEP into an overdamped QEP [20].

If (1.1) is satisfied for a scalar λ and nonzero vector x, we call λ a quadratic eigenvalue,
x an associated quadratic eigenvector , and (λ, x) a quadratic eigenpair .

In this paper, we will launch a systematic study of the HQEP both in theory and
numerical computations that will further reinforce the belief that this class of QEP is the
closest analogue to the standard Hermitian eigenvalue problem. In the theoretical front,
we will

• review existing results of Courant-Fischer type min-max principles, Cauchy interlac-
ing inequalities;

• establish Wielandt-Lidskii type min-max principles for the sums of selected quadratic
eigenvalues and, as corollaries, trace min/max type principles;

• establish perturbation results in the spectral and Frobenius norm, as well as general
unitarily invariant norms on how the quadratic eigenvalues will change if A, B, C
are perturbed.

In the numerical front, we will

• justify a naturally extended Rayleigh-Ritz type procedure, with the existing and
newly established min-max principles, why the procedure will produce the best ap-
proximations to quadratic eigenvalues/eigenvectors;

• propose extended steepest descent/ascent and CG type methods for computing ex-
treme quadratic eigenpairs;

1W. Kahan, private cmmunications, November 2013.
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• establish convergence results, including the rate of convergence for the extended
steepest descent/ascent methods, which shed light on preconditioning in what con-
stitutes a good preconditioner and how to construct one.

In a separate paper, we will extend most of the development in this paper to the hyperbolic
polynomial eigenvalue problem.

The rest of this paper is organized as follows. In section 2, we collect some properties
for hyperbolic quadratic matrix polynomials and establish a few more about an HQEP.
Wielandt-Lidskii type min-max principles, among others, are given in section 3. Eigen-
perturbation analysis for HQEP is done in section 4. In section 5, we justify the use
of the Rayleigh-Ritz procedure for extracting interested quadratic eigenvalues and their
associated quadratic eigenvectors within a given subspace. The steepest descent/ascent
method and its extended variation are studied in section 6, where a detailed convergence
analysis is performed. Section 7 investigates the preconditioning techniques to speed up
the extended steepest descent/ascent method and explain how an effective preconditioner
should be constructed from two different perspectives. Section 8 introduces the block
variations of the methods in the previous two sections. Various conjugate gradient methods
– the plain, locally optimal, and extended subspace search versions combined with suitable
preconditoners and blocking – are described in detail in section 9. Two numerical examples
are presented in section 10 to demonstrate the effectiveness of the locally optimal block
preconditioned conjugate gradient method in the previous section. Finally in section 11, we
present our concluding remarks. In appendix section A, we review the Jordan canonical
form of a positive semidefinite matrix pencil and establish a perturbation theory for a
positive definite matrix pencil for use in section 4.

Notation. Throughout this paper, Cn×m is the set of all n × m complex matrices,
Cn = Cn×1, and C = C1. R is the set of all real numbers. In (or simply I if its dimension
is clear from the context) is the n×n identity matrix, and ej is its jth column. XH is the
conjugate transpose of a vector or matrix. For X ∈ Cn×m, σmin(X) is the smallest singular
value of X (X has min{m,n} singular values), ∥X∥2 and ∥X∥F and ∥X∥ui are the spectral,
Frobenius, and a general unitarily invariant norm of X, and κ2(X) = ∥X∥2∥X−1∥2 is the
condition number of X.

A ≻ 0 (A ≽ 0) means that A is Hermitian positive (semi-)definite, and A ≺ 0 (A ≼ 0)
if −A ≻ 0 (−A ≽ 0). A1/2 ≽ 0 is the unique square root of A ≽ 0.

The integer triplet (i−(H), i0(H), i+(H)) denotes the inertia of an Hermitian matrix
H, meaning that H has i−(H) negative, i0(H) zero, and i+(H) positive eigenvalues,
respectively, and λmin(H) and λmax(H) are its smallest and largest eigenvalue.

Generic notation eig( · ) is the set of all eigenvalues, counting algebraic multiplicities, of
a matrix or a matrix pencil, depending on its argument(s): eig(A) is for A, and eig(A,B)
is for A − λB. We use polyeig(A0, A1, · · · , Ak) as MATLAB’s function polyeig for the
set of all polynomial eigenvalues of λkAk + · · · + λA1 + A0. Note polyeig(A0, A1) is not
the same of eig(A0, A1).
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2 Hyperbolic quadratic matrix polynomial

Given A,B,C ∈ Cn×n, define

QQQ(λ) := λ2A+ λB + C, (2.1)

a quadratic matrix polynomial of order n.

Definition 2.1. QQQ(λ) is said Hermitian if A,B, and C are all Hermitian, hyperbolic if it
is Hermitian, A ≻ 0, and

(xHBx)2 − 4(xHAx)(xHCx) > 0, for all 0 ̸= x ∈ Cn, (2.2)

overdamped if it is hyperbolic as well as B ≻ 0, C ≽ 0. For a hyperbolic QQQ(λ), define

ς(x) :=
[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2
, ς0(x) :=

ς(x)

xHx
. (2.3)

The quadratic eigenvalue problem (QEP) for QQQ( · ) is to find λ ∈ C and 0 ̸= x ∈ Cn
such that

QQQ(λ)x = 0.

When this equation is satisfied, λ is called a quadratic eigenvalue and x the associ-
ated quadratic eigenvector. Evidently all quadratic eigenvalues of QQQ( · ) is the roots of
detQQQ(λ) = 0 which has 2n (complex) roots, counting multiplicities.

The next theorem summarizes some of the relevant theoretical results on hyperbolic
quadratic polynomials. They can be found in Guo and Lancaster [20] which is an excellent
gateway to references of origins for these results. Item 3(c) can be found in [64, (0.7)].

Theorem 2.1. Let QQQ(λ) = λ2A+ λB + C as in (2.1) be Hermitian with A ≻ 0.

1. QQQ(λ) is hyperbolic if and only if there exists λ0 ∈ R such that QQQ(λ0) ≺ 0.

2. If QQQ(λ) is hyperbolic, then its quadratic eigenvalues are all real.

3. Suppose QQQ(λ) is hyperbolic. Denote its quadratic eigenvalues by λ±i and arrange
them in the order of

λ−1 ≤ · · · ≤ λ−n < λ+1 ≤ · · · ≤ λ+n . (2.4)

Then

(a) QQQ(λ) ≺ 0 for all λ ∈ (λ−n , λ
+
1 );

(b) QQQ(λ) ≻ 0 for all λ ∈ (−∞, λ−1 ) ∪ (λ+n ,+∞);

(c) the inertia of QQQ(λ) is (n− k, 0, k) for λ ∈ (λ+k , λ
+
k+1) or λ ∈ (λ−n−k, λ

−
n+1−k) for

k = 1, · · · , n, concluding that QQQ(λ) is indefinite for λ ∈ (λtyp1 , λtypn );

(d) QQQ(λ) is overdamped if and only if λ+n ≤ 0.
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An immediate consequence of Theorem 2.1 is a test to determine whether QQQ(λ) is
hyperbolic or not [20]: check if its quadratic eigenvalues are all real and, in the case they
are all real, check if QQQ(λ0) ≺ 0, where λ0 = (λ−n + λ+1 )/2.

A common technique of solving QEP (1.1), or more generally the polynomial eigenvalue
problem, is linearization that converts a polynomial eigenvalue problem to an equivalent
generalized (linear) eigenvalue problem of a matrix pencil [16, 25, 42].

Under the condition that A is nonsingular, QEP (1.1) is equivalent to the generalized
eigenvalue problem of the following matrix pencil

LQQQ(λ) :=

[
−C 0
0 A

]
− λ

[
B A
A 0

]
= A − λB, (2.5)

or

KQQQ(λ) :=

[
0 −C

−C −B

]
− λ

[
−C 0
0 A

]
= A − λB (2.6)

in the sense that polyeig(C,B,A) = eig(A ,B) and associated eigenvectors of one can be
recovered from those for the other. More can be said ifQQQ(λ) = λ2A+λB+C is hyperbolic.
Relevant results are summarized in the following lemma, where item 5 is essentially in [4]
(see also [9], [26, Theorem 3.6], and [63, Theorem 5A]).

Theorem 2.2. Let QQQ(λ) = λ2A + λB + C as in (2.1) and let LQQQ(λ) be as in (2.5).
Suppose A is nonsingular.

1. polyeig(C,B,A) = eig(A ,B).

2. If A ≻ 0 and B is Hermitian, then the inertia of B is (n, 0, n).

3. If (µ, x) is an eigenpair of QQQ(λ), then (µ,

[
x
µx

]
) is an eigenpair of LQQQ(λ).

4. If (µ,

[
x
y

]
) is an eigenpair of LQQQ(λ), then (µ, x) is an eigenpair of QQQ(λ) and y = µx.

5. Suppose QQQ(λ) is Hermitian. QQQ(λ) is hyperbolic if and only if LQQQ(λ) is a positive
definite pencil.

6. Suppose QQQ(λ) is hyperbolic, and adopt the notation in item 3 of Theorem 2.1. Then
LQQQ(λ) ≻ 0 for all λ ∈ (λ−n , λ

+
1 ).

Proof. Since for any λ ∈ C,[
I 0

−λI I

]T [−QQQ(λ) 0
0 A

] [
I 0

−λI I

]
=

[
−C − λB −λA

−λA A

]
= LQQQ(λ). (2.7)

Thus (−1)n detQQQ(λ) ·detA ≡ detLQQQ(λ) and item 1 follows. For item 2, A ≻ 0 guarantees
that there is a nonsingular matrix X ∈ Cn×n such that

XHAX = In, XHBX = diag(ω1, . . . , ωn) =: Ω,
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where ωi ∈ R. We have [
X

X

]H
B

[
X

X

]
=

[
Ω In
In 0

]
(2.8)

whose eigenvalues are the union of all the eigenvalues of[
ωi 1
1 0

]
for i = 1, 2, . . . , n.

But the two eigenvalues of each one of these 2× 2 matrices are

ωi −
√
ω2
i + 4

2
< 0,

ωi +
√
ω2
i + 4

2
> 0.

Therefore the last matrix in (2.8) has n positive and n negative eigenvalues, as expected.
Items 3 and 4 can be verified in a straightforward way by using (2.7). Also by using (2.7),
we see that diag(−QQQ(λ), A) and LQQQ(λ) are congruent for all λ ∈ R, and hence items 5
and 6 follow from items 1 and 3(a) of Theorem 2.1, respectively.

One consequence of Theorem 2.2 is that any hyperbolic QQQ(λ) = λ2A + λB + C gives
rise to a positive definite matrix pencil LQQQ(λ) as defined by (2.5) with B having inertia
(n, 0, n). There is a converse to the statement, too.

Theorem 2.3. Let L(λ) = A − λB be a positive definite Hermitian pair of order 2n. If
the inertia of B is (n, 0, n), then there exists a hyperbolic QQQ(λ) = λ2A + λB + C and a
nonsingular matrix U ∈ C2n×2n such that the following statements are true.

1. If (µ, x) is a quadratic eigenpair of QQQ(λ), then (µ,U

[
x
µx

]
) is an eigenpair of L(λ).

2. If (µ,

[
x̃
ỹ

]
) is an eigenpair of L(λ) and we define

[
x
y

]
= U−1

[
x̃
ỹ

]
, where x ∈ Cn,

then (µ, x) is a quadratic eigenpair of QQQ(λ) and y = µx.

Proof. Since L(λ) is positive definite and the inertia of B is (n, 0, n), by Theorem A.1
there exists a nonsingular matrix W such that WHAW = diag(Λ+,−Λ−) and W

HBW =
diag(I,−I), where Λ+ = diag(λ+1 , · · · , λ+n ), Λ− = diag(λ−1 , · · · , λ−n ) and λ±i ∈ R and
λ+i > λ−j for all i and j. Set

A = I, B = −(Λ+ + Λ−), C = Λ+Λ−,

S =

[
Λ− −I
Λ+ −I

] [
(Λ+ − Λ−)

−1/2 0

0 (Λ+ − Λ−)
−1/2

]
,

and QQQ(λ) = λ2A + λB + C. It can be verified that corresponding to this QQQ(λ), LQQQ(λ)
of (2.5) satisfies LQQQ(λ) = SHWHL(λ)WS. Since L(λ) is positive definite, there is a
λ0 ∈ R such that L(λ0) ≻ 0 which implies LQQQ(λ0) ≻ 0 and thus QQQ(λ0) ≺ 0 by (2.7).
Consequently, this QQQ(λ) is hyperbolic by item 1 of Theorem 2.1. Finally take U = WS
for items 1 and 2.
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Theorem 2.4. LetQQQ(λ) = λ2A+λB+C be hyperbolic. Then for any X ∈ Cn×m satisfying
XHAX = Im,

(XHBX)2 − 4(XHCX) ≻ 0. (2.9)

Proof. For any y ∈ Cm with ∥y∥2 = 1, write x = Xy. We have

yH
[
(XHBX)2 − 4(XHCX)

]
y

= (XHBXy)H(XHBXy)− 4(Xy)HC(Xy)

= ∥y∥22 · ∥XHBXy∥22 − 4(Xy)HC(Xy) · yH(XHAX)y (2.10)

≥
[
yH(XHBXy)

]2 − 4(Xy)HC(Xy) · (Xy)HA(Xy) (2.11)

= (xHBx)2 − 4xHCx · xHAx
> 0, (2.12)

where we have used ∥y∥2 = 1 and XHAX = Im for (2.10), and used the Cauchy-
Bunyakovsky-Schwarz inequality for (2.11). Therefore (XHBX)2 − 4(XHCX) ≻ 0 by
(2.12).

Theorem 2.5. Let QQQ(λ) = λ2A+ λB +C be a hyperbolic quadratic matrix polynomial of
order n, and denote by λ±i its quadratic eigenvalues which are arranged as in (2.4). Set

Λ+ = diag(λ+1 , · · · , λ
+
n ), Λ− = diag(λ−1 , · · · , λ

−
n ). (2.13)

Then there exists nonsingular Z ∈ C2n×2n of the form

Z =

[
U+ U−
U+Λ+ U−Λ−

]
, (2.14)

where U+, U− ∈ Cn×n are nonsingular and

Υ := U−1
+ U− (2.15)

is unitary, such that

ZHA Z = ZH

[
−C

A

]
Z =

[
Λ+

−Λ−

]
, (2.16a)

ZHBZ = ZH

[
B A
A

]
Z =

[
In

−In

]
. (2.16b)

Write
U+ = [u+1 , u

+
2 , . . . , u

+
n ], U− = [u−1 , u

−
2 , . . . , u

−
n ].

As a consequence of (2.14) and (2.16), we have the following statements.

1. QQQ(λ+i )u
+
i = 0, QQQ(λ−i )u

−
i = 0 for i = 1, 2, · · · , n. Thus there are n linearly indepen-

dent quadratic eigenvectors associated with all λ+i , and the same can be said about
quadratic eigenvectors associated with all λ−i .

2. ς(u±i ) = 1 for i = 1, 2, . . . , n.
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3. QQQ(λ) admits

QQQ(λ) = U−H
− (λI − Λ−)U

H
−AU+(λI − Λ+)U

−1
+ , (2.17a)

QQQ(λ) = U−H
+ (λI − Λ+)U

H
+AU−(λI − Λ−)U

−1
− . (2.17b)

4. UH
−AU+ = (Λ+Υ −ΥΛ−)

−1. As a result, A,B,C and QQQ(λ) can be expressed in terms
of Λ± and any two of U+, U−, and Υ , assuming (2.15). In particular,

A = U−H
+ ΘU−1

+ , (2.18a)

B = U−H
+ (I −ΘΛ+ − Λ+Θ)U−1

+ , (2.18b)

C = U−H
+ (Λ+ΘΛ+ − Λ+)U

−1
+ , (2.18c)

QQQ(λ) = U−H
+

[
(λI − Λ+)Θ(λI − Λ+) + (λI − Λ+)

]
U−1
+ , (2.18d)

where

Θ = (Λ+ − ΥΛ−Υ
H)−1. (2.18e)

5. We have

∥U+∥2 = ∥U−∥2 ≤
∥A−1/2∥2√
λ+1 − λ−n

, (2.19a)

∥U−1
+ ∥2 = ∥U−1

− ∥2 ≤ ∥A1/2∥2
√
λ+n − λ−1 , (2.19b)

κ(U+) = κ(U−) ≤
√
κ(A)

√
λ+n − λ−1
λ+1 − λ−n

, (2.19c)

and

∥Z∥2 ≤ Ξ∥U±∥2, ∥Z−1∥2 ≤
Ξ

λ+1 − λ−n
∥U−1

± ∥2, (2.20)

where ξ± = max{|λ±1 |, |λ±n |} and

Ξ =
2 + ξ2+ + ξ2− +

√
[(ξ+ − 1)2 + (ξ− + 1)2][(ξ+ + 1)2 + (ξ− − 1)2]

2
.

The following converse to item 4 is also true: given diagonal matrices Λ± as in (2.13)
and two of U+, U−, and Υ , where Υ ∈ Cn×n as in (2.15) is unitary and U+, U− ∈ Cn×n
are nonsingular, if λ±i can be arranged as in (2.4), then the quadratic matrix polynomial
constructed by (2.18) is hyperbolic.

Proof. Since QQQ(λ) is hyperbolic, LQQQ(λ) in (2.5) is a positive definite pencil. By Theo-
rem A.1, there exists a nonsingular Z ∈ C2n×2n to give (2.16). We have to show that Z
must take the form (2.14).

Since each column of Z is an eigenvector of the pencil LQQQ(λ), by Theorem 2.2, we

conclude that the ith column of Z can be expressed as

[
u+i
λ+i u

+
i

]
for 1 ≤ i ≤ n and

[
u−j
λ−j u

−
j

]

9



for 1 ≤ j = i− n ≤ n, where u+i , u
−
j are the corresponding quadratic eigenvectors of QQQ(λ)

associated with λ+i and λ−j , respectively. Hence Z takes the form (2.14).
Blockwise, the equations in (2.16) yield

UH
+CU+ − Λ+U

H
+AU+Λ+ = −Λ+, (2.21a)

UH
−CU− − Λ−U

H
−AU−Λ− = Λ−, (2.21b)

UH
+CU− − Λ+U

H
+AU−Λ− = 0, (2.21c)

UH
+BU+ + UH

+AU+Λ+ + Λ+U
H
+AU+ = I, (2.21d)

UH
−BU− + UH

−AU−Λ− + Λ−U
H
−AU− = −I, (2.21e)

UH
+BU− + UH

+AU−Λ− + Λ+U
H
+AU− = 0. (2.21f)

We claim that U+ is nonsingular. Consider U+x = 0 for some x ∈ Cn. We will prove that
x = 0 and thus U+ is nonsingular. By (2.21d),

xHx = xHIx = xH(UH
+BU+ + UH

+AU+Λ+ + Λ+U
H
+AU+)x = 0

which implies x = 0, as was to be shown. Similarly, U− is nonsingular.
Next, we define

Λ̂+ := U+Λ+U
−1
+ , Λ̂− := U−Λ−U

−1
− . (2.22)

We deduce from (2.21c) and (2.21f) the expressions for C and B in (2.23a) below, and
then use C = CH and B = BH to get (2.23b).

C = Λ̂H
−AΛ̂+, B = −AΛ̂+ − Λ̂H

−A, (2.23a)

C = Λ̂H
+AΛ̂−, B = −AΛ̂− − Λ̂H

+A. (2.23b)

Using the second equation in (2.23a), we deduce from (2.21d) and (2.21e) that

U−H
+ U−1

+ = B +AΛ̂+ + Λ̂H
+A = (Λ̂+ − Λ̂−)

HA,

U−H
− U−1

− = −B −AΛ̂− − Λ̂H
−A = A(Λ̂+ − Λ̂−).

So U−H
+ U−1

+ = (U−H
− U−1

− )H = U−H
− U−1

− . Thus,

(U−1
+ U−)

HU−1
+ U− = UH

−U
−H
+ U−1

+ U− = I,

which infers Υ := U−1
+ U− is unitary.

Item 1 is straightforward. We now prove item 2 for u+i and the case for u−i can be
handled in exactly the same way. Write ai = (u+i )

HAu+i , bi = (u+i )
HBu+i , and ci =

(u+i )
HCu+i . By (2.21a) and (2.21d), we have

ci − (λ+i )
2ai = −λ+i , bi + 2aiλ

+
i = 1

solving which for ci and bi to get

b2i − 4aici = (1− 2aiλ
+
i )

2 − 4ai[−λ+i + (λ+i )
2ai] = 1.

For item 3, we have, by (2.23),

QQQ(λ) = (λI − Λ̂H
−)A(λI − Λ̂+), QQQ(λ) = (λI − Λ̂H

+)A(λI − Λ̂−)
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which, together with (2.22), yield (2.17). For item 4, write Λ−;Υ = ΥΛ−Υ
H, then Λ+ −

Λ−;Υ ≻ 0 because for x ̸= 0,

xH(Λ+ − Λ−;Υ )x ≥ λ+1 x
Hx− λ−n x

HΥHΥx = (λ+1 − λ−n )x
Hx > 0

which also implies
0 ≺ (Λ+ − Λ−;Υ )

−1 ≼ (λ+1 − λ−n )
−1I. (2.24)

Substitute U− = U+Υ into (2.21c) to get UH
+CU+ − Λ+U

H
+AU+Λ−;Υ = 0 and thus by

(2.21a), we have

0 = UH
+CU+ − Λ+U

H
+AU+Λ+ + Λ+

= Λ+U
H
+AU+Λ−;Υ − Λ+U

H
+AU+Λ+ + Λ+

= Λ+

[
I − UH

+AU+(Λ+ − Λ−;Υ )
]
. (2.25)

Substitute U+ = U−Υ
H into (2.21c) to get UH

−CU− − Λ+;ΥU
H
−AU−Λ− = 0, where Λ+;Υ =

ΥHΛ+Υ . Thus by (2.21b), we have

0 = UH
−CU− − Λ−U

H
−AU−Λ− − Λ−

= Λ+;ΥU
H
−AU−Λ− − Λ−U

H
−AU−Λ− − Λ−

= −
[
I − (Λ+;Υ − Λ−)U

H
−AU−

]
Λ−. (2.26)

We note that at least one of Λ+ and Λ− is nonsingular. If Λ+ is nonsingular, then (2.25)
implies

UH
+AU+(Λ+ − Λ−;Υ ) = I ⇒ UH

+AU+ = (Λ+ − Λ−;Υ )
−1. (2.27)

If Λ− is nonsingular, then (2.26) implies (Λ+;Υ − Λ−)U
H
−AU− = I which, upon using

U− = U+Υ , also implies the second equation in (2.27). Then UH
−AU+ = (Λ+Υ − ΥΛ−)

−1.
So, UH

+AU+ = Θ, UH
+BU+ = −ΘΛ+ − Λ−;ΥΘ, and UH

+CU+ = Λ−;ΥΘΛ+. Noticing

Λ−;ΥΘ = −(Λ+ − Λ−;Υ )Θ + Λ+Θ = −I + Λ+Θ,

we have (2.18).
For item 5, the equalities in (2.19) is a consequence of U− = U+Υ and that Υ is unitary.

We now prove (2.19) for U+. Use (A1/2U+)
H(A1/2U+) = Θ to get

∥U+∥2 ≤ ∥A−1/2∥2∥A1/2U+∥2 = ∥A−1/2∥2
√

∥Θ∥2 ≤
∥A−1/2∥2√
λ+1 − λ−n

,

and use (U−1
+ A−1/2)(U−1

+ A−1/2)H = Θ−1 to get

∥U−1
+ ∥2 ≤ ∥U−1

+ A−1/2∥2∥A1/2∥2 =
√

∥Θ−1∥2∥A1/2∥2 ≤ ∥A1/2∥2
√
λ+n − λ−1 .

They give (2.19a) and (2.19b) for U+. Combine (2.19a) and (2.19b) to get (2.19c). For
the first inequality in (2.20), we have

∥Z∥2 ≤
∥∥∥∥[ ∥U+∥2 ∥U−∥2

∥U+∥2ξ+ ∥U−∥2ξ−

]∥∥∥∥
2

= ∥U+∥2
∥∥∥∥[ 1 1
ξ+ ξ−

]∥∥∥∥
2

= ∥U+∥2Ξ.
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For the second inequality, we notice by using U− = U+Υ

Z =

[
U+ 0
0 U+

] [
I Υ
Λ+ ΥΛ−

]
=

[
U+ 0
0 U+

] [
I 0
Λ+ I

] [
I Υ
0 S

]
,

where S = ΥΛ− − Λ+Υ = −Θ−1Υ . This expression, after some calculations, leads to

Z−1 =

[
I −ΥS−1

0 S−1

] [
I 0

−Λ+ I

] [
U−1
+ 0

0 U−1
+

]
=

[
ΥS−1ΥΛ−Υ

H ΥS−1

−S−1Λ+ S−1

] [
U−1
+ 0

0 U−1
+

]
,

and thus

∥Z−1∥2 ≤ ∥S−1∥2
∥∥∥∥[ξ− 1
ξ+ 1

]∥∥∥∥
2

∥U−1
+ ∥2 = ∥U−1

+ ∥2∥Θ∥2Ξ

which implies the second inequality in (2.20).
We now prove the converse of item 4. First Θ is Hermitian and Θ ≻ 0 by (2.24).

Obviously A,B,C in (2.18) is Hermitian and A ≻ 0. Choose λ0 = (λ+1 + λ−n )/2, then
Θ−1 ≻ Λ+ − λ0I ≻ 0 and Θ ≺ (Λ+ − λ0I)

−1. Thus,

UH
+QQQ(λ0)U+ = (Λ+ − λ0I)Θ(Λ+ − λ0I)− (Λ+ − λ0I) ≺ 0

which says QQQ(λ0) ≺ 0. By item 1 of Theorem 2.1, QQQ(λ) is hyperbolic.

Remark 2.1. 1. Each of the decompositions in (2.17) doesn’t reflect the symmetry
property in QQQ(λ) somewhat. However, using the fact that Υ = U−1

+ U− is unitary,
we can turn them into

QQQ(λ) = U−H
+ (λI − ΥΛ−Υ

H)(Λ+ − ΥΛ−Υ
H)−1(λI − Λ+)U

−1
+ , (2.28a)

QQQ(λ) = U−H
− (λI − ΥHΛ+Υ )(ΥΛ+Υ

H − Λ−)
−1(λI − Λ−)U

−1
− . (2.28b)

These equations are essentially the decomposition in [43, Theorem 31.24] but with
more detail.

2. [22, Lemma 6.1] and Problem gen_hyper2 of [5] provide a different set of formulas
for B and C:

B = U−H
+

[
−Θ(Λ2

+ − ΥΛ2
−Υ

H)Θ
]
U−1
+ , (2.29a)

C = U−H
+

[
−Θ(Λ3

+ − ΥΛ3
−Υ

H)Θ

+Θ(Λ2
+ − ΥΛ2

−Υ
H)Θ(Λ2

+ − ΥΛ2
−Υ

H)Θ
]
U−1
+ . (2.29b)

[31, Corollary 6] provides yet another formula for C:

C = U−H
+

[
− (Λ−1

+ − ΥΛ−1
− ΥH)−1

]
U−1
+ . (2.30)

Although both (2.29) and (2.30) look more complicated than ours for B and C in
(2.18b) and (2.18c), they are actually the same in theory. In fact, we have

Θ(Λ2
+ − ΥΛ2

−Υ
H)Θ = Θ(Λ2

+ − [Λ+ −Θ−1]2)Θ
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= Λ+Θ +ΘΛ+ − I (2.31)

which says (2.29a) is the same as (2.18b).

Λ−1
+ − ΥΛ−1

− ΥH = Λ−1
+ − [Λ+ −Θ−1]−1 (use (2.18e))

= Λ−1
+ (−Θ−1)[Λ+ −Θ−1]−1 (use X−1 − Y −1 = X−1[Y −X]Y −1)

= −(Λ+ΘΛ+ − Λ+)
−1.

So (2.30) is the same as (2.18c). Finally

Θ(Λ3
+ − ΥΛ3

−Υ
H)Θ = Θ(Λ3

+ − [Λ+ −Θ−1]3)Θ

= Θ−1 +ΘΛ2
+ + Λ2

+Θ +ΘΛ+Θ
−1Λ+Θ −ΘΛ+Θ

−1

−Θ−1Λ+Θ − Λ+.

Therefore use also (2.31) to get

−Θ(Λ3
+ − ΥΛ3

−Υ
H)Θ +Θ(Λ2

+ − ΥΛ2
−Υ

H)Θ(Λ2
+ − ΥΛ2

−Υ
H)Θ

= −(Θ−1 +ΘΛ2
+ + Λ2

+Θ +ΘΛ+Θ
−1Λ+Θ −ΘΛ+Θ

−1 −Θ−1Λ+Θ − Λ+)

+ (ΘΛ+ + Λ+Θ − I)Θ−1(ΘΛ+ + Λ+Θ − I)

= −(Θ−1 +ΘΛ2
+ + Λ2

+Θ +ΘΛ+Θ
−1Λ+Θ −ΘΛ+Θ

−1 −Θ−1Λ+Θ − Λ+)

+Θ−1 −ΘΛ+Θ
−1 − Λ+ − Λ+ +ΘΛ2

+ + Λ+ΘΛ+

−Θ−1Λ+Θ +ΘΛ+Θ
−1Λ+Θ + Λ2

+Θ

= −Λ+ + Λ+ΘΛ+

which proves that (2.29b) is the same as (2.18c).

3. Λ̂± in (2.22) are two solutions of the matrix equation

AX2 +BX + C = 0. (2.32)

In fact,

A(U+Λ+U
−1
+ )2 +B(U+Λ+U

−1
+ ) + C = (AU+Λ

2
+ +BU+Λ+ + CU+)U

−1
+ = 0,

and similarly for A(U−Λ−U
−1
− )2 + B(U−Λ−U

−1
− ) + C = 0. On the other hand,

the ability of solving (2.32) factorizes QQQ(λ) into the product of two linear matrix
polynomials, based on which Guo and Lancaster [20] proposed their solvent approach
for solving HQEP (1.1) of modest sizes.
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3 Variational principles

Throughout this section,QQQ(λ) = λ2A+λB+C ∈ Cn×n will be always assumed a hyperbolic
quadratic matrix polynomial and the notations in Theorem 2.5 will be kept. The scalar
λ0 is as in item 1 of Theorem 2.1 such that QQQ(λ0) ≺ 0.

Consider the following equation in λ

f(λ, x) := xHQQQ(λ)x = λ2(xHAx) + λ(xHBx) + (xHCx) = 0, (3.1)

given x ̸= 0. Since QQQ(λ) is hyperbolic, this equation always has two distinct real roots (as
functions of x)

ρ±(x) =
−xHBx±

[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2
2(xHAx)

. (3.2)

We shall call ρ+(x) the pos-type Rayleigh quotient of QQQ(λ) at x, and ρ−(x) the neg-type
Rayleigh quotient of QQQ(λ) at x. It is easy to verify that for any x ̸= 0, ρ±(x) ∈ R,
and ρ±(αx) = ρ±(x) for any α ∈ C. By the elementary knowledge of scalar quadratic
polynomials, we have

ρ+(x) + ρ−(x) = −x
HBx

xHAx
, ρ+(x) · ρ−(x) =

xHCx

xHAx
. (3.3)

Both will be used later in this paper.

Theorem 3.1. We have

ρ+(x) ∈ [λ+1 , λ
+
n ], ρ−(x) ∈ [λ−1 , λ

−
n ], (3.4)

ς(x) :=
[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2
= ±[2ρ±(x)x

HAx+ xHBx], (3.5)

ς0(x) =
ς(x)

xHx
∈ [(λ+1 − λ−n )λmin(A), (λ

+
n − λ−1 )λmax(A)]. (3.6)

Consequently, λ+i = ρ+(u
+
i ) for the quadratic eigenpair (λ+i , u

+
i ) and ρ−(u

−
j ) = λ−j for the

quadratic eigenpair (λ−j , u
−
j ).

Proof. By item 3 of Theorem 2.1, for any fixed nonzero x, f(λ, x) < 0 for λ ∈ (λ−n , λ
+
1 ) and

f(λ, x) > 0 for λ ∈ (−∞, λ−1 ) ∪ (λ+n ,+∞). Thus, the larger root of the scalar quadratic
equation f(λ, x) = 0 in λ must lie in [λ+1 , λ

+
n ] and the smaller one in [λ−1 , λ

−
n ]. That is

(3.4). For (3.5), we have

2ρ±(x)x
HAx+ xHBx =

[
− xHBx±

√
(xHBx)2 − 4(xHAx)(xHCx)

]
+ xHBx

= ±ς(x).

Lastly, the inclusion (3.6) is a result of ς(x) = [ρ+(x)− ρ−(x)]x
HAx.

14



3.1 Courant-Fischer type min-max principles

Theorem 3.2 below is a restatement of [43, Theorem 32.10, Theorem 32.11 and Re-
mark 32.13]. However, it is essentially due to Duffin [12, 1955] whose proof, although
for overdamped QQQ, works for the general hyperbolic case. Closely related ones for more
general nonlinear eigenvalue problems (other than quadratic eigenvalue problems) can be
found in [49, 50, 66, 67]. They can be considered as a generalization of the Courant-Fischer
min-max principles (see [47, p.206], [56, p.201]).

Theorem 3.2 ([12]). We have for 1 ≤ i ≤ n

λ+i = max
X⊆Cn

codimX=i−1

min
x∈X
x̸=0

ρ+(x), (3.7a)

λ+i = min
X⊆Cn

dimX=i

max
x∈X
x ̸=0

ρ+(x), (3.7b)

λ−i = max
X⊆Cn

codimX=i−1

min
x∈X
x̸=0

ρ−(x), (3.7c)

λ−i = min
X⊆Cn

dimX=i

max
x∈X
x ̸=0

ρ−(x). (3.7d)

In particular,

λ+1 = min
x ̸=0

ρ+(x), λ+n = max
x ̸=0

ρ+(x), (3.8a)

λ−1 = min
x ̸=0

ρ−(x), λ−n = max
x ̸=0

ρ−(x). (3.8b)

3.2 Wielandt-Lidskii type min-max principles

Theorems 3.3 and 3.4 which can be considered as generalizations of Amir-Moéz type min-
max principles [1] and Theorem 3.5 which can be considered as generalizations of the
Wielandt-Lidskii min-max principles ([39, 69] and also [6, p.67], [56, p.199]) and Ky-Fan
trace min/max principles [15] are new. For the ease of stating them, let λ± ∈ R such that

λ− ≤ λ−1 ≤ λ−n ≤ λ0 ≤ λ+1 ≤ λ+n ≤ λ+.

Such λ± exist, e.g., λ− = λ−1 or −∞ and λ+ = λ+n or ∞. Set intervals

I+ =

{
[λ0, λ+], if λ+ <∞,

[λ0,∞), otherwise,
I− =

{
[λ−, λ0], if λ− > −∞,

(−∞, λ0], otherwise.
(3.9)

The following lemma is also essentially due to Duffin [12] whose proof, although for
overdamped Q, again works for the general hyperbolic case.

Lemma 3.1. We have

λ+i ≥ ρ+(x) for any x ∈ span{u+1 , u
+
2 , . . . , u

+
i }, (3.10a)

λ+i ≤ ρ+(x) for any x ∈ span{u+i , u
+
i+1, . . . , u

+
n }. (3.10b)
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To generalize Amir-Moéz/Wielandt-Lidskii min-max principles, we introduce the fol-
lowing notations. For X ∈ Cn×k with rank(X) = k, XHQQQ(λ)X is a k × k hyperbolic
quadratic matrix polynomial. Hence its quadratic eigenvalues are real. Denote them by
λ±i,X arranged as

λ−1,X ≤ · · · ≤ λ−k,X ≤ λ+1,X ≤ · · · ≤ λ+k,X . (3.11)

Theorem 3.3. Let 1 ≤ i1 < · · · < ik ≤ n. For any

Φ : I+ × · · · × I+︸ ︷︷ ︸
k

→ R

that is non-decreasing in each of its arguments, we have2

min
X1⊂···⊂Xk
dimXj=ij

sup
xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) = Φ(λ+i1 , · · · , λ

+
ik
), (3.12a)

max
X1⊃···⊃Xk

codimXj=ij−1

inf
xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) = Φ(λ+i1 , · · · , λ

+
ik
). (3.12b)

If also Φ is continuous, then “ sup” in (3.12a) and “ inf” in (3.12b) can be replaced by
“max” and “min”, respectively. In particular, setting ij = j in (3.12a) and setting
ij = j + n− k in (3.12b), respectively, give

min
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) = Φ(λ+1 , · · · , λ

+
k ), (3.13a)

max
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) = Φ(λ+n−k+1, · · · , λ

+
n ). (3.13b)

Proof. For convenience, we define, for a matrix W = [w1, . . . , wp],

Sj,W := span{w1, · · · , wj}, Tj,W := span{wj , · · · , wp} for j = 1, · · · , p.

In particular SW = Sp,W , TW = T1,W , and thus SW = TW .
First we prove (3.12b). Recall the quadratic eigenvectors u+j introduced in Theo-

rem 2.5. Choose
X̂j = span{u+ij , · · · , u

+
n } for j = 1, 2, . . . , k. (3.14)

Then X̂1 ⊃ · · · ⊃ X̂k and codim X̂j = ij − 1. By Lemma 3.1, ρ+(x) ≥ λ+ij for any x ∈ X̂j .
Therefore

min
x∈X̂j

x ̸=0

ρ+(x) = λ+ij .

For any X = [x1, . . . , xk] with xj ∈ X̂j for j = 1, · · · , k such that rank(X) = k, consider
XHQQQ(λ)X which is a k × k hyperbolic quadratic matrix polynomial. For j = 1, · · · , k,
noticing Tj,X ⊂ X̂j , we have by Theorem 3.2

λ+j,X = max
X⊂TX

dimX=k−j+1

min
x∈X
x ̸=0

ρ+(x) ≥ min
x∈Tj,X
x ̸=0

ρ+(x) ≥ min
x∈X̂j

x̸=0

ρ+(x) = λ+ij .

2In (3.12a), it is not clear if the “ sup” is attainable for any given Xj satisfying the given assumptions,
except for continuous Φ. The same comment applies to the “ inf” in (3.12b).
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Since Φ(·) is non-decreasing in each of its arguments,

Φ(λ+1,X , · · · , λ
+
k,X) ≥ Φ(λ+i1 , · · · , λ

+
ik
)

which gives
min

xj∈X̂j , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) ≥ Φ(λ+i1 , · · · , λ

+
ik
)

because xj ∈ X̂j for 1 ≤ i ≤ k are arbitrary, subject to rank(X) = k. Therefore

sup
X1⊃···⊃Xk

codimXj=ij−1

inf
xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) ≥ Φ(λ+i1 , · · · , λ

+
ik
). (3.15)

On the other hand, let Xj for j = 1, · · · , k be any subspaces that satisfy the assump-
tions: X1 ⊃ · · · ⊃ Xk and codimXj = ij − 1. Define Yj = span{u+1 , · · · , u

+
ij
}. Then

Y1 ⊂ · · · ⊂ Yk and dimYj = ij . By [1, Corollary 2.2] (see also [37, Lemma 3.2]), there
exists two A-orthonormal sets {x1, . . . , xk} and {y1, · · · , yk} with xj ∈ Xj for j = 1, . . . , k
and yj ∈ Yj for 1 ≤ j ≤ k such that

TX := span{x1, · · · , xk} = span{y1, · · · , yk} =: SY .

where X = [x1, . . . , xk] and Y = [y1, · · · , yk] satisfy XHAX = Y HAY = Ik. Y
HQQQ(λ)Y

is a hyperbolic quadratic matrix polynomial whose pos-type quadratic eigenvalues are
λ+1,Y ≤ · · · ≤ λ+k,Y . Since SY = TX , λ

+
j,Y = λ+j,X for j = 1, · · · , k. By Lemma 3.1,

ρ+(y) ≤ λ+ij for any y ∈ Yj . Therefore

max
y∈Yj

y ̸=0

ρ+(y) = λ+ij .

By Theorem 3.2 and noticing Sj,Y ⊂ Yj , we have, for j = 1, · · · , k,

λ+j,X = λ+j,Y = min
Y⊂SY

dimY=j

max
y∈Y
y ̸=0

ρ+(y) ≤ max
y∈Sj,Y
y ̸=0

ρ+(y) ≤ max
y∈Yj

y ̸=0

ρ+(y) = λ+ij .

Since Φ(·) is non-decreasing in each of its arguments,

Φ(λ+1,X , · · · , λ
+
k,X) ≤ Φ(λ+i1 , · · · , λ

+
ik
),

which gives
inf

xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) ≤ Φ(λ+i1 , · · · , λ

+
ik
).

Since Xj are arbitrary, we conclude

sup
X1⊃···⊃Xk

codimXj=ij−1

inf
xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) ≤ Φ(λ+i1 , · · · , λ

+
ik
). (3.16)
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Combine (3.15) and (3.16) to get

sup
X1⊃···⊃Xk

codimXj=ij−1

inf
xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X) = Φ(λ+i1 , · · · , λ

+
ik
). (3.12b′)

But the “ sup” here is achievable by the selection in (3.14). Thus we have (3.12b).
Now we claim the “ inf ” can be replaced by “min” for a continuous Φ. Let Xj for

j = 1, · · · , k be given and satisfy the assumptions: X1 ⊃ · · · ⊃ Xk and codimXj = ij − 1.
There exist a sequence X(i) ∈ Cn×k with rank(X(i)) = k and its jth column in Xj such
that

lim
i→∞

Φ(λ+
1,X(i) , · · · , λ+k,X(i)) = inf

xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Φ(λ+1,X , · · · , λ
+
k,X). (3.17)

Without loss of generality, we may assume X(i) has A-orthonormal columns, i.e.,

(X(i))HAX(i) = Ik;

otherwise we can perform the Gram-Schimdt A-orthogonalization on the columns of X(i)

from the last column backwards, and the new X(i) has the same property as the old X(i):
rank(X(i)) = k and its jth column in Xj , and also λ±

j,X(i) remain the same. Since {X(i)}
is a bounded set in Cn×k, it has a convergent subsequence. Through renaming, we may
assume that {X(i)} itself is convergent, and let Y ∈ Cn×k be the limit. It is not hard to
see that Y HAY = Ik which implies rank(Y ) = k and that the jth column of Y is in Xj .
Since (X(i))HQQQ(λ)X(i) goes to Y HQQQ(λ)Y , by the continuity of quadratic eigenvalues with
respect to the coefficient matrices we conclude

lim
i→∞

λ±
j,X(i) = λ±j,Y for 1 ≤ j ≤ k.

Therefore the left-hand side of (3.17) is equal to Φ(λ+1,Y , · · · , λ
+
k,Y ), and thus the “ inf ” in

(3.17) is attainable.

For (3.12a), a proof similar to what we did above for (3.12b) works: choosing X̂j =
span{u+1 , · · · , u

+
ij
} will lead to that the left-hand side is no bigger than its right-hand side,

and choosing Yj = span{u+ij , · · · , u
+
n } will give the opposite.

Similarly to Theorem 3.3, we have

Theorem 3.4. Let 1 ≤ i1 < · · · < ik ≤ n. For any

Ψ : I− × · · · × I−︸ ︷︷ ︸
k

→ R

that is non-decreasing in each of its arguments, we have3

min
X1⊂···⊂Xk
dimXj=ij

sup
xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Ψ(λ−1,X , · · · , λ
−
k,X) = Ψ(λ−i1 , · · · , λ

−
ik
), (3.18a)

3In (3.18a), it is not clear if the “ sup” is attainable for any given Xj satisfying the given assumptions.
The same comment applies to the “ inf” in (3.18b).
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max
X1⊃···⊃Xk

codimXj=ij−1

inf
xj∈Xj , j=1,...,k
X=[x1,...,xk]
rank(X)=k

Ψ(λ−1,X , · · · , λ
−
k,X) = Ψ(λ−i1 , · · · , λ

−
ik
). (3.18b)

If also Ψ is continuous, then “ sup” in (3.18a) and “ inf” in (3.18b) can be replaced by
“max” and “min”, respectively. In particular, setting ij = j in (3.18a) and setting
ij = j + n− k in (3.18b), respectively, give

min
rank(X)=k

Ψ(λ−1,X , · · · , λ
−
k,X) = Ψ(λ−1 , · · · , λ

−
k ), (3.19a)

max
rank(X)=k

Ψ(λ−1,X , · · · , λ
−
k,X) = Ψ(λ−n−k+1, · · · , λ

−
n ). (3.19b)

Proof. Consider the hyperbolic quadratic matrix polynomial Q̂QQ(λ) = λ2A + λ(−B) + C
whose quadratic eigenvalues are

λ̂−1 ≤ · · · ≤ λ̂−n < λ̂+1 ≤ · · · ≤ λ̂+n ,

where λ̂−i = −λ+n−i+1 and λ̂+j = −λ−n−j+1. Apply (3.12b) to Q̂QQ(λ) with

Φ(ξ1, . . . , ξk) := −Ψ(−ξk, . . . ,−ξ1)

to get (3.18a), and apply (3.12a) to Q̂QQ(λ) with the same Φ to get (3.18b).

Specializing Theorems 3.3 and 3.4 to the case where Φ and Ψ are the sum of its argu-
ments gives us Wielandt-Lidskii type min-max principles as summarized in the following
theorem and Ky-Fan type trace min/max principles.

Theorem 3.5. Let 1 ≤ i1 < · · · < ik ≤ n and typ ∈ {+,−}. Then

min
X1⊂···⊂Xk
dimXj=ij

max
xj∈Xj

X=[x1,...,xk]
rank(X)=k

k∑
j=1

λtypj,X =
k∑
j=1

λtypij , (3.20a)

max
X1⊃···⊃Xk

codimXj=ij−1

min
xj∈Xj

X=[x1,...,xk]
rank(X)=k

k∑
j=1

λtypj,X =
k∑
j=1

λtypij . (3.20b)

In particular, setting ij = j in (3.20a) and setting ij = j + n− k in (3.20b) give

min
rank(X)=k

k∑
j=1

λtypj,X =

k∑
j=1

λtypj , max
rank(X)=k

k∑
j=1

λtypj,X =

k∑
j=1

λtypn−k+j . (3.21)

3.3 Cauchy type interlacing inequalities

The Cauchy type interlacing inequalities in (3.22) were recently obtained by Veselić [64].
Here we present a simple proof, using our generalizations of Amir-Moéz type min-max
principles in Theorems 3.3 and 3.4.
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Theorem 3.6 (Cauchy-type interlacing inequalities [64]). Suppose X ∈ Cn×k with rank(X) =
k. Denote the quadratic eigenvalues of XHQQQ(λ)X by

µ−1 ≤ · · · ≤ µ−k < µ+1 ≤ · · · ≤ µ+k .

Then

λ+i ≤ µ+i ≤ λ+i+n−k, i = 1, · · · , k, (3.22a)

λ−j ≤ µ−j ≤ λ−j+n−k, j = 1, · · · , k. (3.22b)

Proof. Let
Φ(α1, · · · , αk) = the ith largest αj .

Then this Φ satisfies the condition of Theorem 3.3. Making use of (3.13a) and (3.13b)
gives µ+i ≥ λ+i and µ+i ≤ λ+i+n−k, respectively. That is (3.22a). Similarly, we get (3.22b)
by Theorem 3.4.

Remark 3.1. The Cauchy type interlacing inequalities in Theorem 3.6 are sharper than
those possibly derivable by linearization. Actually, through linearization and by item 1 of
[38, Theorem 1.1] (which is, in fact, [30, Theorem 2.1]), we can only obtain

λ+i ≤ µ+i ≤ λ+i+2n−2k, i = 1, · · · , k,
λ−j−(n−k) ≤ µ−j ≤ λ−j+n−k, j = 1, · · · , k,

where we set λ+i = +∞ for i > n and λ−j = −∞ for j < 1.

20



4 Perturbation analysis

4.1 Setting the stage

Throughout this section, we suppose that Hermitian matrices A, B, and C are perturbed
to Hermitian matrices Ã, B̃, and C̃ and set

∆A = Ã−A, ∆B = B̃ −B, ∆C = C̃ − C. (4.1)

This notational convention of placing a “˜” over a symbol for the corresponding perturbed
quantity and a “∆” before a symbol for the change in the quantity will be generalized
to all quantities that depend on A, B, and C. For example, QQQ(λ) = λ2A + λB + C is

perturbed to Q̃QQ(λ) = λ2Ã+ λB̃ + C̃, as a result, and

∆ρ±(x) =
−(xHB̃x)±

[
(xHB̃x)2 − 4(xHÃx)(xHC̃x)

]1/2
2(xHÃx)

−
−(xHBx)±

[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2
2(xHAx)

.

Besides A ≻ 0, the other key condition for QQQ(λ) = λ2A+ λB + C to be hyperbolic is

[ς(x)]2 = (xHBx)2 − 4(xHAx)(xHCx) > 0, for all 0 ̸= x ∈ Cn. (2.2)

We first establish a condition under which (2.2) is weakly4 satisfied for all convex combi-

nation (1− t)QQQ(λ) + t Q̃QQ(λ). To this end, we define

ϕ(x) := (xH∆Bx)2 − 4(xH∆Ax)(xH∆Cx), (4.2)

ψ(x) := (xHBx)(xH∆Bx)− 2(xHAx)(xH∆Cx)− 2(xHCx)(xH∆Ax), (4.3)

and define ϕ̃(x) and ψ̃(x) in the same way, except by swapping the positions of A, B, C
with those of Ã, B̃, and C̃. It can be verified that

ϕ̃(x) = ϕ(x), ψ̃(x) = −ψ(x)− ϕ(x).

Also define

g(t) : = (xH[B + t∆B]x)2 − 4(xH[A+ t∆A]x)(xH[C + t∆C]x)

= ς(x)2 + 2ψ(x)t+ ϕ(x)t2.

So g(0) = ς(x) and g(1) = ς̃(x). Correspondingly,

g̃(t) : = (xH[B̃ − t∆B]x)2 − 4(xH[Ã− t∆A]x)(xH[C̃ − t∆C]x)

= ς̃(x)2 + 2ψ̃(x)t+ ϕ(x)t2.

Note that g(t) = g̃(1− t).
By definition, if A ≻ 0, then QQQ(λ) is hyperbolic if and only if g(0) > 0 for any nonzero

x ∈ Cn, and if Ã ≻ 0, then Q̃QQ(λ) is hyperbolic if and only if g(1) > 0 for any nonzero
x ∈ Cn.

4By weakly, we mean the strict positivity in (2.2) is given in to nonnegativity.
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Lemma 4.1. Suppose min{g(0), g(1)} ≥ 0. Then g(t) ≥ 0 for all 0 ≤ t ≤ 1 and nonzero
x ∈ Cn if and only if

min{ϕ(x),−ψ(x),−ψ̃(x), ψ(x)2 − ϕ(x)ς(x)2} ≤ 0 for all x ̸= 0. (4.4)

Proof. The condition (4.4) is equivalent to that for any x, at least one of

ϕ(x) ≤ 0, ψ(x) ≥ 0, ψ̃(x) = −ψ(x)− ϕ(x) ≥ 0, ψ(x)2 − ϕ(x)ς(x)2 ≤ 0

holds. Note that g(0) ≥ 0 and g(1) ≥ 0 by assumption. We first prove that (4.4) implies
g(t) ≥ 0 for all 0 ≤ t ≤ 1 and for any nonzero x ∈ Cn. To this end, we let 0 ≤ t ≤ 1 and
0 ̸= x ∈ Cn.

1. If ϕ(x) ≤ 0, then g(t) is concave and thus g(t) ≥ (1− t)g(0) + tg(1) ≥ 0;

2. If ψ(x) ≥ 0, then

g(t) = ς(x)2 + 2ψ(x)t+ ϕ(x)t2

≥ ς(x)2 + 2ψ(x)t2 + ϕ(x)t2

= (1− t2)g(0) + t2g(1)

≥ 0;

3. If ψ̃(x) ≥ 0, then similarly g̃(t) ≥ (1− t2)g̃(0) + t2g̃(1) ≥ 0;

4. Consider the case ψ(x)2 − ϕ(x)ς(x)2 ≤ 0. Suppose 5 ϕ(x) > 0. Then g(t) is a
nontrivial quadratic function and has at most one zero in R. Going through the
cases either there is no zero or the zero is in (0, 1) or the zero is outside of (0, 1), we
can see g(t) ≥ 0 for all 0 ≤ t ≤ 1.

Next for the necessity of (4.4), suppose there were an x ̸= 0 satisfying ϕ(x) > 0, ψ(x) < 0,
−ψ̃(x) = ψ(x) + ϕ(x) > 0, and ψ(x)2 − ϕ(x)ς(x)2 > 0. Then

min
t
g(t) = −ψ(x)

2 − ϕ(x)ς(x)2

ϕ(x)
< 0

and mint g(t) is attained at tmin = −ψ(x)
ϕ(x) ∈ (0, 1), contradicting the assumption that

g(t) ≥ 0 for 0 ≤ t ≤ 1.

Given a shift λ0 ∈ R, define

QQQλ0(λ) :=QQQ(λ+ λ0) = λ2A+ λ(2λ0A+B) +QQQ(λ0) (4.5)

= λ2A+ λBλ0 + Cλ0 , (4.6)

where
Bλ0 = 2λ0A+B, Cλ0 =QQQ(λ0). (4.7)

It can be verified that (µ, x) is a quadratic eigenpair of QQQλ0(λ) if and only if (µ + λ0, x)
is a quadratic eigenpair of QQQ(λ).

5The case ϕ(x) ≤ 0 has already been dealt with.
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Lemma 4.2. Suppose that QQQ(λ) is hyperbolic, and adopt the notations introduced in The-
orem 2.5.

1. If λ0 ∈ (λ−n , λ
+
1 ), then diag(−Cλ0 , A) = diag(−QQQ(λ0), A) ≻ 0.

2. If λ0 ∈ [λ+n ,+∞), then QQQλ0(λ) is overdamped, i.e. Bλ0 ≻ 0 and Cλ0 ≽ 0. Moreover,

−(λ−n + λ+n − 2λ0)A ≼ Bλ0 ≼ −(λ−1 + λ+1 − 2λ0)A, (4.8)

(λ−n − λ0)(λ
+
n − λ0)A ≼ Cλ0 ≼ (λ−1 − λ0)(λ

+
1 − λ0)A. (4.9)

3. If ∥A−1/2∆AA−1/2∥2 < 1, then Ã ≻ 0.

Proof. Item 1 is a consequence of Theorem 2.1 and (4.7). For (4.8) of item 2, we have for
any x ̸= 0

xHBλ0x = 2λ0x
HAx+ xHBx

= xHAx

(
2λ0 +

xHBx

xHAx

)
= xHAx

(
2λ0 − [ρ+(x) + ρ−(x)]

)
which, together with (3.4), yields (4.8). For (4.9), we have for any x ̸= 0

xHCλ0x = xHQQQ(λ0)x = xHAx[λ0 − ρ+(x)][λ0 − ρ−(x)]

which, together with (3.4), yields (4.9). For item 3, we notice the smallest eigenvalue of
A−1/2ÃA−1/2 satisfies

λmin(A
−1/2ÃA−1/2) = 1 + λmin(A

−1/2∆AA−1/2) ≥ 1− ∥A−1/2∆AA−1/2∥2 > 0

if ∥A−1/2∆AA−1/2∥2 < 1.

4.2 Asymptotical analysis

It is a common technique to perform an asymptotical analysis in numerical analysis for at
least three reasons:

1. it is mathematically sound, provided it is known that the interested quantities are
continuous with respect to what is being perturbed;

2. it is relatively easy because it is a first order analysis, and

3. it is powerful in revealing the intrinsic sensitivity of the interested quantities.

Let (µ, x) is a simple quadratic eigenpair of HQEP (1.1) for QQQ(λ). Since HQEP (1.1)
is equivalent to the eigenvalue problem for the regular matrix pencil LQQQ(λ) in (2.5) and
since the eigenvalues of a regular matrix pencil and the eigenvectors associated with simple
eigenvalues are continuous with respect to the entries of the involved matrices [56], Q̃QQ(λ)
has a simple quadratic eigenpair (µ̃, x̃) = (µ+∆µ, x+∆x) such that ∆µ→ 0 and ∆x→ 0
as ∆A, ∆B, ∆C → 0. Now suppose that ∥∆A∥, ∥∆B∥, and ∥∆C∥ are sufficiently tiny,
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and so are ∆µ and ∥∆x∥. Ignoring terms of order 2 or higher and noticing QQQ(µ)x = 0, we

have from Q̃QQ(µ+∆µ) (x+∆x) = 0

∆µ
[
2µA+B

]
x+

[
µ2∆A+ µ∆B +∆C

]
x+

[
µ2A+ µB + C

]
∆x ≈ 0, (4.10)

where the “≈” means the equation is true after ignoring terms of order 2 or higher. Pre-
multiply (4.10) by xH and use xHQQQ(µ) = 0 to get

∆µ ≈ −
xH
[
µ2∆A+ µ∆B +∆C

]
x

xH
[
2µA+B

]
x

(4.11)

= −
xH
[
µ2∆A+ µ∆B +∆C

]
x

ς(x)
(4.12)

= − µ2

±ς(x)
· xH∆Ax− µ

±ς(x)
· xH∆Bx− 1

±ς(x)
· xH∆Cx. (4.13)

where the equality in (4.12) is due to (3.5). There is a clear interpretation of (4.13): the
change ∆µ is proportional to ∆A, ∆B, ∆C with multiplying factors |µ2/ς(x)|, |µ/ς(x)|,
and 1/|ς(x)|, respectively. Our following strict bounds reflect this interpretation.

The expression (4.11) is not new and its derivation follows a rather standard technique
(see, e.g., [62]). What is new here is the use of (3.5) to relate its denominator xH

[
2µA+B

]
x

to ς(x), a quantity that determines the hyperbolicity of QQQ.

4.3 Perturbation bounds in the spectral norm

Throughout the rest of this section, we assume QQQ(λ) and Q̃QQ(λ) are hyperbolic and

∥A−1/2∆AA−1/2∥2 < 1 (4.14)

which guarantees Ã ≻ 0. We will adopt the notations introduced in Theorem 2.5. Our
goal is to bound the norms of

∆Λ+ = diag(λ̃+1 − λ+1 , . . . , λ̃
+
n − λ+n ), ∆Λ− = diag(λ̃−1 − λ−1 , . . . , λ̃

−
n − λ−n ).

Bounds on norms of the change to Λ = diag(Λ−, Λ+) are easily derivable through

∥∆Λ∥2 = max
±

∥∆Λ±∥2, ∥∆Λ∥F =
√

∥∆Λ+∥2F + ∥∆Λ−∥2F,

∥∆Λ∥ui ≤ 2max
±

∥∆Λ±∥ui.

In this subsection, we will focus on the spectral norm, and leave the case for the
Frobenius norms and more generally unitarily invariant norms to the next subsection.
Our main results of this subsection are summarized in Theorem 4.1.

Theorem 4.1. Let typ ∈ {+,−}, and

ϵa = ∥A−1/2∆AA−1/2∥2, ϵb =
∥∆B∥2
∥B∥2

, ϵc =
∥∆C∥2
∥C∥2

, (4.15)

λtypmax = max{|λtyp1 |, |λtypn |}, λ̃typmax = max{|λ̃typ1 |, |λ̃typn |}, (4.16)

χς = min
x ̸=0

{ς0(x), ς̃0(x)}, χλtyp = max{λtypmax, λ̃
typ
max}. (4.17)
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1. If ∆A = ∆B = 0 and

ϵc <
χ2
ς

4∥A∥2∥C∥2
, (4.18)

then

∥∆Λtyp∥2 ≤
1

χς
∥∆C∥2. (4.19)

2. If ∆B = ∆C = 0 and

ϵa < min

{
1,

χ2
ς

4∥A∥2∥C∥2

}
, (4.20)

then

∥∆Λtyp∥2 ≤
χ2
λtyp

(1− ϵa)χς
∥∆A∥2. (4.21)

3. If ∆A = ∆C = 0 and

ϵb <
χ2
ς

∥B∥2(∥B∥2 + 2
√
∥A∥2∥C∥2)

, (4.22)

then

∥∆Λtyp∥2 ≤
χλtyp

χς
∥∆B∥2 +

∥C∥2
χ3
ς

∥∆B∥22. (4.23)

4. If ∆A = ∆C = 0 and

∥∆B∥2 <
χ2
ς

∥2λ0A+B∥2 + 2
√
∥A∥2∥QQQ(λ0)∥2

, (4.24)

where λ0 ∈ (−∞,min{λ−1 , λ̃
−
1 }] ∪ [max{λ+n , λ̃+n },+∞), then

∥∆Λtyp∥2 ≤
χλtyp + |λ0|

χς
∥∆B∥2. (4.25)

5. In general, without assuming two of ∆A, ∆B, and ∆C are zeros, if

ϵa < γmin

{
1,

χ2
ς

4∥A∥2∥C∥2

}
, (4.26a)

ϵb < γ
χ2
ς

∥B∥2(∥B∥2 + 2
√

∥A∥2∥C∥2)
, (4.26b)

ϵc < γ
χ2
ς

4∥A∥2∥C∥2
, (4.26c)

where

γ =
χ2
ς

∥B∥22 + χ2
ς +

√
(∥B∥22 + χ2

ς )(∥B∥22 + 2χ2
ς )
<

√
2− 1, (4.27)

then

∥∆Λtyp∥2 ≤
4

(1− ϵa)χ3
ς

∥C∥2
[
∥A∥2∥C∥2(ϵa + ϵc)

2 + ∥B∥22(ϵb + ϵa)(ϵb + ϵc)
]

+
1

(1− ϵa)χς

[
(χλtyp)

2∥∆A∥2 + χλtyp∥∆B∥2 + ∥∆C∥2
]
. (4.28)
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All bounds by this theorem are strict. They are consistent with the asymptotic ex-
pression (4.13) rather well after dropping terms of order 2 or higher in ϵa, ϵb, and ϵc. For
example, (4.28) yields

∥∆Λtyp∥2 > 1

χς

[
(χλtyp)

2∥∆A∥2 + χλtyp∥∆B∥2 + ∥∆C∥2
]
. (4.29)

The rest of this subsection is devoted for the proof of Theorem 4.1. Later in the next
subsection, we will extend (4.19) to a general unitarily invariant norm.

Each of many expressions below is in its compact form for two. For example, (4.30)
includes two displayed equations: one for ∆ρ+ and one for ∆ρ+ with all “±” selected as
either “+” or “−”, accordingly.

Lemma 4.3. If (4.4) and (4.14) hold, then there exists 0 ≤ ξ ≤ 1 such that

∆ρ±(x) = δ±(x, ξ) := ±
[
δ3(x, ξ)−

xHAx

xHÃx
δ±2 (x)

]
(4.30)

for any x ̸= 0, where

δ±2 (x) =
ρ±(x)

2(xH∆Ax) + ρ±(x)(x
H∆Bx) + xH∆Cx

ς(x)
, (4.31a)

δ3(x, ξ) =
ς(x)2ϕ(x)− ψ(x)2

4(xHÃx) [ς(x)2 + 2ψ(x)ξ + ϕ(x)ξ2]3/2
, (4.31b)

ϕ(x) and ψ(x) are defined in (4.2) and (4.3). In addition,

1

1 + ∥A−1/2∆AA−1/2∥2
≤ xHAx

xHÃx
≤ 1

1− ∥A−1/2∆AA−1/2∥2
, (4.32)

|δ±2 (x)| ≤
max{|λ±1 |2, |λ±n |2}∥∆A∥2 +max{|λ±1 |, |λ±n |}∥∆B∥2 + ∥∆C∥2

min
x ̸=0

ς0(x)
. (4.33)

Proof. According to how the difference operator ∆ is defined at the beginning of subsec-
tion 4.1, we have

±∆ρ±(x) =
∆ς(x)∓ xH∆Bx

2(xHAx)
+
ς̃(x)∓ xHB̃x

2
∆

(
1

xHAx

)
=: ϵ1 + ϵ2. (4.34)

The rest of this proof is to calculate ϵ1 and ϵ2. By Lemma 4.1,

f(t;x) :=
[
ς(x)2 + 2ψ(x)t+ ϕ(x)t2

]1/2
(4.35)

is well-defined and differentiable for 0 ≤ t ≤ 1. By the Taylor expansion, there exists
0 ≤ ξ ≤ 1 such that

ς̃(x) = f(1;x) = f(0;x) + f ′(0;x) +
1

2
f ′′(ξ;x)

= ς(x) +
ψ(x)

ς(x)
+
ς(x)2ϕ(x)− ψ(x)2

2[f(ξ;x)]3
. (4.36)
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This ξ depends on x. Now we are ready to calculate ϵ1 and ϵ2. We have

ϵ1 = ∓ xH∆Bx

2(xHAx)
+

1

2(xHAx)

(
ψ(x)

ς(x)
+
ς(x)2ϕ(x)− ψ(x)2

2[f(ξ;x)]3

)
= ∓ xH∆Bx

2(xHAx)
+

(xHBx)(xH∆Bx)

2(xHAx)ς(x)
− xH∆Cx

ς(x)
− xHCx

ς(x)

xH∆Ax

xHAx
+
ς(x)2ϕ(x)− ψ(x)2

4(xHAx)[f(ξ;x)]3

= −±ς(x)− (xHBx)

2(xHAx)

xH∆Bx

ς(x)
− xH∆Cx

ς(x)
− xHCx

ς(x)

xH∆Ax

xHAx
+
ς(x)2ϕ(x)− ψ(x)2

4(xHAx)[f(ξ;x)]3

= −ρ±(x)(x
H∆Bx)

ς(x)
− xH∆Cx

ς(x)
− xHCx

ς(x)

xH∆Ax

xHAx
+
xHÃx

xHAx

ς(x)2ϕ(x)− ψ(x)2

4(xHÃx)[f(ξ;x)]3

= −δ±2 (x) +
ρ±(x)

2(xH∆Ax)

ς(x)
− xHCx

ς(x)

xH∆Ax

xHAx
+
xHÃx

xHAx
δ3(x, ξ)

and

ϵ2 = − [ς̃(x)∓ xHB̃x](xH∆Ax)

2(xHÃx)(xHAx)
=

∓ρ̃±(x)(xH∆Ax)
xHAx

= −[±ρ±(x)±∆ρ±(x)]
xH∆Ax

xHAx
.

Noticing

xHCx

ς(x)
± ρ±(x) =

xHCx

ς(x)
± −xHBx± ς(x)

2(xHAx)

=
2(xHAx)(xHCx)∓ xHBxς(x) + ς(x)2

2ς(x)(xHAx)

=
(xHBx)2 − ς(x)2 ∓ 2(xHBx)ς(x) + 2ς(x)2

4ς(x)(xHAx)

=
[xHBx∓ ς(x)]2

4ς(x)(xHAx)
=
ρ±(x)

2(xHAx)

ς(x)
,

we have

±∆ρ±(x) = ϵ1 + ϵ2 = −δ±2 (x) +
xHÃx

xHAx
δ3(x, ξ)− [±∆ρ±(x)]

xH∆Ax

xHAx

solving which for ±∆ρ±(x) leads to ∆ρ±(x) = δ±(x, ξ).

Lemma 4.4. Suppose (4.4) and (4.14) hold. Let δ±lb(x), δ
±
ub(x), δ̃

±
lb(x), and δ̃±ub(x) be

functions satisfying

δ±lb(x) ≤ δ±(x, ξ) ≤ δ±ub(x), δ̃±lb(x) ≤ δ̃±(x, ξ) ≤ δ̃±ub(x) (4.37)

for all x ∈ Cn, ξ ∈ [0, 1], where δ±(x, ξ) is defined as in Lemma 4.3. Write

γ±uu = max
x̸=0

{ δ±ub(x), δ̃
±
ub(x)}, γ±ll = max

x ̸=0
{−δ±lb(x),−δ̃

±
lb(x)},

γ±lu = max
x̸=0

{−δ±lb(x), δ
±
ub(x)}, γ̃±lu = max

x ̸=0
{−δ̃±lb(x), δ̃±ub(x)}.

Then
∥∆Λ±∥2 = max

1≤i≤n
|∆λ±i | ≤ min{γ±uu, γ±ll , γ

±
lu, γ̃

±
lu}. (4.38)
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Proof. We only consider the “+” case below; the “−” case is similar. In fact simply
replacing “+” with “−” gives a proof for the “−” case.

By Lemma 4.3,
δ+lb(x) ≤ ∆ρ+(x) = δ+(x, ξ) ≤ δ+ub(x).

Let Si = span{u+1 , · · · , u
+
i },Ti = span{u+i , · · · , u+n } and similarly define S̃i and T̃i. By the

Courant-Fischer type min-max principles in Theorem 3.2,

λ+i = min
dimX=i

max
0 ̸=x∈X

ρ+(x) = max
0̸=x∈Si

ρ+(x) = ρ+(u
+
i ),

λ̃+i = min
dimX=i

max
0 ̸=x∈X

ρ̃+(x) = max
0̸=x∈S̃i

ρ̃+(x) = ρ̃+(ũ
+
i ),

λ+i = max
codimX=i−1

min
0 ̸=x∈X

ρ+(x) = min
0̸=x∈Ti

ρ+(x) = ρ+(u
+
i ),

λ̃+i = max
codimX=i−1

min
0 ̸=x∈X

ρ̃+(x) = min
0̸=x∈T̃i

ρ̃+(x) = ρ̃+(ũ
+
i ).

Therefore,

λ̃+i = min
dimX=i

max
0̸=x∈X

ρ̃+(x) ≤ max
0̸=x∈Si

ρ̃+(x)

≤ max
0̸=x∈Si

[
ρ+(x) + δ+ub(x)

]
≤ max

0̸=x∈Si
ρ+(x) + max

0̸=x∈Si
δ+ub(x)

= λ+i + max
0≠x∈Si

δ+ub(x),

λ̃+i = max
codimX=i−1

min
0̸=x∈X

ρ̃+(x) ≥ min
0̸=x∈Ti

ρ̃+(x)

≥ min
0̸=x∈Ti

[
ρ+(x) + δ+lb(x)

]
≥ min

0̸=x∈Ti
ρ+(x) + min

0̸=x∈Ti
δ+lb(x)

= λ+i + min
0̸=x∈Ti

δ+lb(x).

They give (4.39a) below and (4.39b) as well, by switching the roles of QQQ and Q̃QQ:

min
0̸=x∈Ti

δ+lb(x) ≤ λ̃+i − λ+i ≤ max
0 ̸=x∈Si

δ+ub(x), (4.39a)

min
0̸=x∈T̃i

δ̃+lb(x) ≤ λ+i − λ̃+i ≤ max
0 ̸=x∈S̃i

δ̃+ub(x). (4.39b)

It follows from (4.39) that

|∆λ+i | ≤ max

{
max

0̸=x∈Si
δ+ub(x), max

0 ̸=x∈S̃i
δ̃+ub(x)

}
≤ max

x̸=0
{δ+ub(x), δ̃

+
ub(x)} = γ+uu,

|∆λ+i | ≤ max

{
− min

0̸=x∈Ti
δ+lb(x),− min

0̸=x∈T̃i
δ̃+lb(x)

}
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≤ max
x̸=0

{−δ+lb(x),−δ̃
+
lb(x)} = γ+ll ,

|∆λ+i | ≤ max

{
− min

0 ̸=x∈Ti
δ+lb(x), max

0̸=x∈Si
δ+ub(x)

}
≤ max

x̸=0
{−δ+lb(x), δ

+
ub(x)} = γ+lu,

|∆λ+i | ≤ max

{
− min

0̸=x∈T̃i
δ̃+lb(x), max

0 ̸=x∈S̃i
δ̃+ub(x)

}
≤ max

x̸=0
{−δ̃+lb(x), δ̃

+
ub(x)} = γ̃+lu.

This completes the proof of (4.38) for the “+” case.

Proof of Theorem 4.1. We only prove the perturbation results for Λ+. The case for Λ−
can be turned into one for Λ+ by considering the pos-type quadratic eigenvalues of QQQ(−λ)
and Q̃QQ(−λ).

For any α > 0, x ̸= 0, we have

ϵa < α ⇒ |xH∆Ax| < αxHAx, (4.40a)

ϵa < α
χ2
ς

4∥A∥2∥C∥2
⇒ |xH∆Ax| < α

ς(x)2

4|xHCx|
, (4.40b)

ϵc < α
χ2
ς

4∥A∥2∥C∥2
⇒ |xH∆Cx| < α

ς(x)2

4xHAx
, (4.40c)

ϵb < α
χ2
ς

∥B∥2(∥B∥2 + 2
√

∥A∥2∥C∥2)
⇒ |xH∆Bx| < α|xHBx|, (4.40d)

where (4.40a) and (4.40b) hold because∣∣∣∣xH∆AxxHAx

∣∣∣∣ =
∣∣∣∣∣xHA1/2(A−1/2∆AA−1/2)A1/2x

xHA1/2A1/2x

∣∣∣∣∣ ≤ ∥A−1/2∆AA−1/2∥2 = ϵa,

and (4.40d) holds because the left part tells

|xH∆Bx| < α
ς(x)2

|xHBx|+
√

4(xHAx)|xHCx|
= α

(
|xHBx| −

√
4(xHAx)|xHCx|

)
. (4.41)

For item 1: ∆A = ∆B = 0, ϕ(x) = ϕ̃(x) = 0, ψ(x) = −2(xHAx)(xH∆Cx) and
(4.14) holds. Under the assumption (4.18), (4.40c) holds with α = 1. Thus g(1) =
ς(x)2 + 2ψ(x) + ϕ(x) > 0, or equivalently the perturbed quadratic polynomial is still
hyperbolic. Note (4.4) holds for ϕ(x) = 0. Thus δ3(x, ξ) ≤ 0 and δ̃3(x, ξ) ≤ 0. We can
take, in (4.37),

δ+ub(x) = −δ+2 (x) = −x
H∆Cx

ς(x)
, δ̃+ub(x) = −δ̃+2 (x) =

xH∆Cx

ς̃(x)
(4.42)

to give

|δ+ub(x)| ≤
∥∆C∥2

minx ̸=0 ς0(x)
, |δ̃+ub(x)| ≤

∥∆C∥2
minx̸=0 ς̃0(x)

.
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Using (4.38), we have ∥∆Λ+∥2 ≤ γ+uu to get (4.19).
For item 2: ∆B = ∆C = 0, ϕ(x) = ϕ̃(x) = 0, ψ(x) = −2(xHCx)(xH∆Ax). Under

the assumption (4.20), (4.14) holds; (4.40a) and (4.40b) hold with α = 1. Thus g(1) =
ς(x)2 + 2ψ(x) + ϕ(x) > 0, or equivalently the perturbed quadratic polynomial is still
hyperbolic. Note (4.4) holds for ϕ(x) = 0. Thus δ3(x, ξ) ≤ 0 and δ̃3(x, ξ) ≤ 0. We can
take, in (4.37),

δ+ub(x) = −x
HAx

xHÃx
δ+2 (x) = −x

HAx

xHÃx

ρ+(x)
2(xH∆Ax)

ς(x)
,

δ̃+ub(x) = −x
HÃx

xHAx
δ̃+2 (x) =

xHÃx

xHAx

ρ̃+(x)
2(xH∆Ax)

ς̃(x)
,

along with (4.32), to give

|δ+ub(x)| ≤
1

1− ϵa

(λ+max)
2∥∆A∥2

minx̸=0 ς0(x)
, |δ̃+ub(x)| ≤ (1 + ϵa)

(λ̃+max)
2∥∆A∥2

minx̸=0 ς̃0(x)
.

Using (4.38), we have ∥∆Λ+∥2 ≤ γ+uu to get (4.21).
For item 3: ∆A = ∆C = 0, ϕ(x) = ϕ̃(x) = (xHBx)(xH∆Bx), ψ(x) = (xH∆Bx)2 and

(4.14) holds. Under the assumption (4.22), (4.40d) and (4.41) hold with α = 1. (4.41)
tells √

4(xHAx)|xHCx| < |xHBx| − |xH∆Bx| ≤ |xHBx+ xH∆Bx|.

Thus

g(1) = ς(x)2 + 2ψ(x) + ϕ(x)

= (xH∆Bx)2 + 2(xH∆Bx)(xHBx) + (xHBx)2 − 4(xHAx)(xHCx)

≥
[
xH∆Bx+ xHBx−

√
4(xHAx)|xHCx|

] [
xH∆Bx+ xHBx+

√
4(xHAx)|xHCx|

]
> 0,

or equivalently the perturbed quadratic polynomial is still hyperbolic. (4.40d) tells |ψ(x)| =
|xHBx| > |xH∆Bx| = ϕ(x). Thus (4.4) holds. Notice

ς(x)2ϕ(x)− ψ(x)2 = ς(x)2(xH∆Bx)2 − [(xHBx)(xH∆Bx)]2

= −4(xHAx)(xHCx)(xH∆Bx)2

to get

δ3(x, ξ) = −(xHCx)(xH∆Bx)2

[f(ξ;x)]3
,

where f(ξ;x) =
[
ς(x)2 + 2ψ(x)ξ + ϕ(x)ξ2

]1/2
. Since6

min
0≤ξ≤1

f(ξ;x) = min{f(0), f(1)} = min{ς(x), ς̃(x)}, (4.43)

6For the quadratic function h(t) = a(t− c)2 + b with a > 0, if |c| ≥ 1, i.e., c, the minimal point of h(t)
for t ∈ R, is not in the interval (0, 1), then the minimal point of h(t) on [0, 1] must be either 0 or 1. For
the case here, c = ψ(x)/ϕ(x).
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we can take, in (4.37),

δ+ub(x) = −δ+2 (x) +
|xHCx||xH∆Bx|2

min{ς(x), ς̃(x)}3
= −ρ+(x)(x

H∆Bx)

ς(x)
+

|xHCx||xH∆Bx|2

min{ς(x), ς̃(x)}3
,

δ̃+ub(x) = −δ̃+2 (x) +
|xHC̃x||xH∆Bx|2

min{ς(x), ς̃(x)}3
=

ρ̃+(x)(x
H∆Bx)

ς̃(x)
+

|xHC̃x||xH∆Bx|2

min{ς(x), ς̃(x)}3

to give

|δ+ub(x)| ≤
λ+max

minx ̸=0 ς0(x)
∥∆B∥2 +

∥C∥2
χ3
ς

∥∆B∥22,

|δ̃+ub(x)| ≤
λ̃+max

minx ̸=0 ς̃0(x)
∥∆B∥2 +

∥C̃∥2
χ3
ς

∥∆B∥22.

Using (4.38), we have ∥∆Λ+∥2 ≤ γ+uu to get (4.23).
For item 4: ∆A = ∆C = 0, consider the shifted QQQλ0(λ). By item 2 of Lemma 4.2,

QQQλ0(λ) and Q̃QQλ0(λ) are overdamped for λ0 ∈ (−∞,min{λ−1 , λ̃
−
1 }] ∪ [max{λ+n , λ̃+n },+∞).

In particular, Bλ0 ≻ 0, Cλ0 ≽ 0; B̃λ0 ≻ 0, C̃λ0 ≽ 0. Note ςλ0(x) ≡ ς(x), ς̃λ0(x) ≡ ς̃(x).
Under the assumption (4.24), like7 in item 3, |ψλ0(x)| > ϕλ0(x). Thus (4.4) for QQQλ0(λ)

and Q̃QQλ0(λ) holds. Just as in item 3 (note ∆Bλ0 = ∆B since ∆A = 0),

ςλ0(x)
2ϕλ0(x)− ψλ0(x)

2 = −4(xHAx)(xHCλ0x)(x
H∆Bx)2 < 0

which infers δ3;λ0(x, ξ) ≤ 0 and thus we can take, in (4.37),

δ+ub;λ0(x) = −δ+2;λ0(x) = −
ρ+;λ0(x)(x

H∆Bx)

ς(x)
,

δ̃+ub;λ0(x) = −δ̃+2;λ0(x) = −
ρ̃+;λ0(x)(x

H∆Bx)

ς̃(x)

to give

|δ+ub;λ0(x)| ≤
λ+max;λ0

minx ̸=0 ς0(x)
∥∆B∥2, |δ̃+ub;λ0(x)| ≤

λ̃+max;λ0

minx ̸=0 ς̃0(x)
∥∆B∥2.

Using (4.38), we have ∥∆Λ+;λ0∥2 ≤ γ+uu;λ0 to get (4.25).
For item 5, under the assumption (4.26), ϵa < γ < 1 and (4.40) holds with α = γ.

Then (4.14) holds, and

|ψ(x)| ≤ |xHBx||xH∆Bx|+ 2(xHAx)|xH∆Cx|+ 2|xHCx||xH∆Ax|

< |xHBx|2γ +
ς(x)2

2
γ +

ς(x)2

2
γ

= [|xHBx|2 + ς(x)2]γ,

|ϕ(x)| ≤ |xH∆Bx|2 + 4|xH∆Ax||xH∆Cx|
7We will use the same symbols as those forQQQ but with the subscript “λ0” to represent the corresponding

quantities for QQQλ0 .
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< |xHBx|2γ2 + |xH∆Ax| ς(x)
2γ

xHAx

< |xHBx|2γ2 + ς(x)2γ2

= [|xHBx|2 + ς(x)2]γ2,

which infers

g(1) = ς(x)2 + 2ψ(x) + ϕ(x)

> ς(x)2(1− 2γ − γ2)− |xHBx|2(2γ + γ2)

≥ (xHx)2
[
χ2
ς (1− 2γ − γ2)− ∥B∥22(2γ + γ2)

]
= (xHx)2

[
χ2
ς − (∥B∥22 + χ2

ς )(2γ + γ2)
]

= 0,

or equivalently the perturbed quadratic polynomial is still hyperbolic. By the same rea-
soning we had for items 1, 2 and 3, (4.4) holds and at the same time, we have (4.43). Note
that

ς(x)2ϕ(x)− ψ(x)2 = −4
[
(xHAx)(xH∆Cx)− (xHCx)(xH∆Ax)

]2
− 4
[
(xHAx)(xH∆Bx)− (xHBx)(xH∆Ax)

]
×[

(xHCx)(xH∆Bx)− (xHBx)(xH∆Cx)
]
,

and similarly

ς̃(x)2ϕ̃(x)− ψ̃(x)2 = −4
[
− (xHÃx)(xH∆Cx) + (xHC̃x)(xH∆Ax)

]2
− 4
[
− (xHÃx)(xH∆Bx) + (xHB̃x)(xH∆Ax)

]
×[

− (xHC̃x)(xH∆Bx) + (xHB̃x)(xH∆Cx)
]

= ς(x)2ϕ(x)− ψ(x)2.

Now take

δ+ub(x) = −x
HAx

xHÃx
δ+2 (x) +

|ς(x)2ϕ(x)− ψ(x)2|
(xHÃx)min{ς(x), ς̃(x)}3

,

δ̃+ub(x) = −x
HÃx

xHAx
δ̃+2 (x) +

|ς(x)2ϕ(x)− ψ(x)2|
(xHAx)min{ς(x), ς̃(x)}3

in (4.37). Note ∣∣∣∣xH∆AxxHAx

∣∣∣∣ ≤ ϵa,

we have

|ς(x)2ϕ(x)− ψ(x)2| ≤ 4(xHAx)2∥C∥22[ϵc + ϵa]
2 + 4(xHAx)∥B∥22∥C∥2[ϵb + ϵa][ϵb + ϵc].

Using (4.38), we have ∥∆Λ+∥2 ≤ γ+uu to get (4.28).
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4.4 Perturbation bounds in unitarily invariant norms

Our main result of this subsection is Theorems 4.2 and 4.3. The proof of Theorem 4.2
is based on our new Wielandt-Lidskii min-max principles. Since it is rather long, we
postpone it after stating both theorems.

Theorem 4.2. Suppose ∆A = ∆B = 0 and (4.18) holds, and let

γ = (λ+1 − λ−n )λmin(A), γ̃ = (λ̃+1 − λ̃−n )λmin(A). (4.44)

Then

∥∆Λ±∥ui ≤ c · ∥∆C∥ui
min{γ, γ̃}

, (4.45)

where the constant c = 1 if ∆C is semidefinite and c = 2 in general.

The inequality (4.45) can be considered as an extension of (4.19), but a little bit less
satisfying in that it does not become (4.19) after specializing the unitarily invariant norm
to the spectral norm in two aspects: c is not always 1 and

min
x̸=0

ς0(x) ≥ γ

which can be a strict inequality. Thus it makes us wonder if the stronger version of (4.45)
upon setting c = 1 always and replacing min{γ, γ̃} by χς holds. But how to settle this
question eludes us for now.

Recall Theorem 2.5. The next theorem is a straightforward application of Theorem A.2,
where ∥Z∥2 and ∥Z̃∥2 can be bounded using item 5 of Theorem 2.5.

Theorem 4.3. Let A − λB = LQQQ(λ) and Ã − λB̃ = L
Q̃QQ
(λ), admitting the eigen-

decomposition in (2.16). Then

∥Λ̃− Λ∥ui ≤ ∥Z∥2∥Z̃∥2
(
∥Ã − A ∥ui + ξ∥B̃ − B∥ui

)
, (4.46)

where ξ = max{|λ+max|, |λ−max|, |λ̃+max|, |λ̃−max|}, and λ±max and λ̃±max are defined by (4.16).

The rest of this subsection is devoted to the proof of Theorem 4.2.

Lemma 4.5. Suppose ∆A = ∆B = 0 and (4.18) holds. Let ε1 ≤ ε2 ≤ · · · ≤ εn be the
eigenvalues of ∆C, and γ and γ̃ be given by (4.44).

1. Given X ∈ Cn×k with rank(X) = k, denote the quadratic eigenvalues of XHQQQ(λ)X
by

λ−1,X ≤ · · · ≤ λ−k,X ≤ λ+1,X ≤ · · · ≤ λ+k,X ,

and the quadratic eigenvalues of XHQ̃QQ(λ)X by λ̃±j,X arranged in the same way. Then

−
k∑
i=1

max{0,−ε1}+ εn−1+i

γ̃
≤

k∑
i=1

∆λ+i,X ≤−
k∑
i=1

min{0,−εn}+ εi
γ

, (4.47a)

k∑
i=1

min{0,−εn}+ εi
γ

≤
k∑
i=1

∆λ−i,X ≤
k∑
i=1

max{0,−ε1}+ εn−1+i

γ̃
. (4.47b)
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2. For any 1 ≤ i1 < · · · < ik ≤ n,

−
k∑
i=1

max{0,−ε1}+ εn+1−i
γ̃

≤
k∑
i=1

∆λ+ik ≤−
k∑
i=1

min{0,−εn}+ εi
γ

, (4.48a)

k∑
i=1

min{0,−εn}+ εi
γ

≤
k∑
i=1

∆λ−ik ≤
k∑
i=1

max{0,−ε1}+ εn+1−i
γ̃

, (4.48b)

Proof. The assumption (4.18) guarantees that Q̃QQ(λ) is still hyperbolic. Without loss of gen-
erality, we may assume thatX has orthonormal columns; otherwise, we consider V HQQQ(λ)V
instead, where V is from a QR decomposition X = V R of X, V HV = Ik and R ∈ Ck×k.
Evidently XHQQQ(λ)X and V HQQQ(λ)V have the same quadratic eigenvalues.

Recall the linearization (2.5) for QQQ(λ). We linearize

QQQX(λ) := XHQQQ(λ)X ≡ AXλ
2 +BXλ+ CX

in the same way to get

AX − λBX ≡
[
−CX 0
0 AX

]
− λ

[
BX AX
AX 0

]
= LQQQX

(λ).

Next we apply Theorem 2.5 to QQQX(λ) to obtain various associated eigen-decompositions
and denote the corresponding quantities by the same symbols as those for QQQ(λ) but with
the subscript X to indicate them for QQQX(λ). In particular, we will have

UX = [u+1,X , · · · , u
+
k,X ], Λ+,X = diag(λ+1,X , λ

+
2,X , · · · , λ

+
k,X),

where u+i,X are quadratic eigenvectors of QQQX(λ), ςX(u
+
i,X) = 1, and

SX =

[
UX

UXΛ+,X

]
, SH

XBXSX = Ik.

Also SH
XB̃XSX = Ik since B̃X = BX . Note that UX ∈ Ck×k is nonsingular. By Theo-

rems 2.2 and [37, Corollary 2.1],

inf
ZHBXZ=Ik

trace(ZHAXZ) =
k∑
i=1

λ+i,X = trace(SH
XAXSX).

Let ε1,X ≤ · · · ≤ εk,X be the eigenvalues of ∆CX = XH∆CX. Since X has orthonormal
columns, we have εi ≤ εi,X ≤ εn−k+i by the Cauchy interlacing theorem, and thus

k∑
i=1

εi ≤
k∑
i=1

εi,X ≤
k∑
i=1

εn+1−i.

For the sake of presentation, we will drop the superscript “+” to u+i,X in the rest of this
proof. We have

k∑
i=1

λ̃+i,X = inf
ZHB̃XZ=Ik

trace(ZHÃXZ)
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≤ trace(SH
XÃXSX) (since SH

XB̃XSX = Ik)

= trace(SH
XAXSX) + trace(SH

X∆AXSX)

=
k∑
i=1

λ+i,X − trace(UH
X∆CXUX). (4.49)

Let µ = min{0,−εn} ≤ 0. For any scalar τ0 ∈ (0, 1), set τ2 = τ20 γ = τ20 (λ
+
1 − λ−n )λmin(A),

and

EX = −µUH
XUX , DX = UH

X(U
−H
X U−1

X − τ2I)UX ,

CX =

[
τ−2(∆CX + µI) 0

0 EX

]
∈ C2k×2k, DX =

[
I 0
0 DX

]
∈ C2k×2k.

Note that by (2.18a), (2.18e), and (2.24),

UH
XAXUX ≼ (λ+1,X − λ−k,X)

−1I ≼ (λ+1 − λ−n )
−1I

which infers

U−H
X U−1

X ≽ (λ+1 − λ−n )AX ≽ (λ+1 − λ−n )λmin(AX)I ≽ (λ+1 − λ−n )λmin(A)I = γI ≻ τ2I.

Thus, DX ≻ 0, and so DX ≻ 0. Hence the matrix pencil CX−λDX has 2k finite eigenvalues
νi (i = 1, · · · , 2k). By the choice of µ, ∆CX +µI ≼ 0 and EX ≽ 0. Therefore these νi can
be ordered as

ν1 ≤ · · · ≤ νk ≤ 0 ≤ νk+1 ≤ · · · ≤ ν2k,

where νi for i = 1, · · · , k are the eigenvalues of τ−2(∆CX+µI) and νi for i = k+1, · · · , 2k
are the generalized eigenvalues of EX −λDX . By the Courant-Fischer min-max principle,
we have for i = 1, · · · , k

νi = min
dimX=i

max
0 ̸=x∈X

xH(∆CX + µI)x

τ2xHx

=
1

τ2

[
µ+ min

dimX=i
max
0 ̸=x∈X

xH∆CXx

xHx

]
=

1

τ2
[
µ+ εi,X

]
≥ 1

τ2
[
µ+ εi

]
=

1

τ20 γ

[
µ+ εi

]
.

By the arbitrary choice of τ0 ∈ (0, 1),

νi ≥
µ+ εi
γ

.

For the matrix TX :=

[
τUX
I

]
, we have

TH
XDXTX = τ2UH

XUX +DX = I,
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TH
XCXTX = τ2τ−2UH

X(∆CX + µI)UX + EX = UH
X∆CXUX .

Therefore

trace(UH
X∆CXUX) = trace(TH

XCXTX)

≥ min
ZHDXZ=I

trace(ZHCXZ)

=

k∑
i=1

νi.

Thus, (4.49) becomes

k∑
i=1

∆λ+i,X ≤ −
k∑
i=1

νi ≤ −
k∑
i=1

µ+ εi
γ

= −
k∑
i=1

min{0,−εn}+ εi
γ

. (4.50)

Think of QQQ as obtained from perturbing Q̃QQ and apply (4.50) to get

−
k∑
i=1

∆λ+i,X ≤ −
k∑
i=1

min{0,−(−ε1)}+ (−εn−1+i)

γ̃
(4.51)

which, combined with (4.50), leads to (4.47a). Apply (4.47a) to QQQ(−λ) and Q̃QQ(−λ) to get
(4.47b).

Now we prove (4.48). With all “sup” being taken over X1 ⊂ · · · ⊂ Xk and codimXj =
ij − 1, and all “inf” over xj ∈ Xj , X = [x1, . . . , xk], and rank(X) = k, we have by
Theorem 3.3

k∑
j=1

λ̃+ik = sup inf

k∑
j=1

λ̃+k,X

≤ sup inf

 k∑
j=1

λ+k,X −
k∑
i=1

min{0,−εn}+ εi
γ

 (by (4.50))

= sup inf
k∑
j=1

λ+k,X −
k∑
i=1

min{0,−εn}+ εi
γ

≤
k∑
j=1

λ+ik −
k∑
i=1

min{0,−εn}+ εi
γ

. (4.52)

Similarly,
k∑
j=1

λ+ik ≤
k∑
j=1

λ̃+ik −
k∑
i=1

min{0,−(−ε1)}+ (−εn−1+i)

γ̃
. (4.53)

The inequalities in (4.48a) is a consequence of (4.52) and (4.53). Apply (4.48a) to QQQ(−λ)
and Q̃QQ(−λ) to get (4.48b).
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Lemma 4.6. Suppose ∆A = ∆B = 0 and (4.18) holds. We have for 1 ≤ j ≤ n

λ̃+j ≤ λ+j and λ̃−j ≥ λ−j if ∆C ≽ 0, (4.54a)

λ̃+j ≥ λ+j and λ̃−j ≤ λ−j if ∆C ≼ 0. (4.54b)

Consequently γ̃ ≤ γ if ∆C ≽ 0, and γ̃ ≥ γ if ∆C ≼ 0.

Proof. The assumption (4.18) guarantees that Q̃QQ(λ) is still hyperbolic. By (3.2), we see

ρ̃+(x) ≤ ρ+(x) and ρ̃−(x) ≥ ρ̃−(x) if ∆C ≽ 0,

ρ̃+(x) ≥ ρ+(x) and ρ̃−(x) ≤ ρ̃−(x) if ∆C ≼ 0.

Now use Theorem 3.2 to get (4.54).

Proof of Theorem 4.2. The assumption (4.18) guarantees that Q̃QQ(λ) is still hyperbolic.
As in Lemma 4.5, let ε1 ≤ ε2 ≤ · · · ≤ εn be the eigenvalues of ∆C.
Consider first the case ∆C ≽ 0. Then 0 ≤ ε1. Also ∆λ+i ≤ 0 for all i by Lemma 4.6.

Therefore the leftmost inequality in (4.48a) gives

k∑
i=1

|∆λ+ik | ≤
k∑
i=1

εn+1−i
γ̃

for any 1 ≤ i1 < · · · < ik ≤ n. As a result of [56, Theorem II.3.6 and Theorem II.3.17],
we have

∥∆Λ+∥ui ≤
∥∆C∥ui

γ̃
. (4.55)

Similarly, use the rightmost inequality in (4.48b) to get

∥∆Λ−∥ui ≤
∥∆C∥ui

γ̃
. (4.56)

Now we turn to the case ∆C ≼ 0. Then εn ≤ 0. Also ∆λ+i ≥ 0 for all i by Lemma 4.6.
Therefore the rightmost inequality in (4.48a) gives

k∑
i=1

|∆λ+ik | ≤
k∑
i=1

|εi|
γ

for any 1 ≤ i1 < · · · < ik ≤ n. Again as a result of [56, Theorem II.3.6 and Theo-
rem II.3.17], we have

∥∆Λ+∥ui ≤
∥∆C∥ui

γ
. (4.57)

Similarly, use the leftmost inequality in (4.48b) to get

∥∆Λ−∥ui ≤
∥∆C∥ui

γ
. (4.58)

The inequalities (4.55) – (4.56) together give (4.45) for the case when ∆C is semidefinite.
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For the general case when ∆C is indefinite, we can decompose ∆C = ∆C+ − ∆C−,
where ∆C± ≽ 0 and

eig(∆C+) = {max{0, εi}, 1 ≤ i ≤ n}, eig(∆C−) = {max{0,−εi}, 1 ≤ i ≤ n}.

In particular, ∥∆C±∥ui ≤ ∥∆C∥ui. Let Ĉ = C − ∆C− and Q̂QQ(λ) = λ2A + λB + Ĉ. We

claim Q̂QQ(λ) is hyperbolic. This is because C̃ = C + ∆C+ − ∆C− ≽ C − ∆C− = Ĉ and
thus for any x ̸= 0

0 < (xHBx)2 − 4(xHAx)(xHC̃x) ≤ (xHBx)2 − 4(xHAx)(xHĈx),

where the first inequality holds because Q̃QQ(λ) is hyperbolic. Apply what we just proved

to QQQ and Q̂QQ to get

∥Λ̂± − Λ±∥ui ≤
∥∆C−∥ui

γ
≤ ∥∆C∥ui

γ
, (4.59)

where Λ̂± are similarly defined for Q̂QQ to Λ± for QQQ. Notice C̃ = Ĉ +∆C+ and apply what
we just proved to QQQ and Q̂QQ to get

∥Λ̃± − Λ̂±∥ui ≤
∥∆C+∥ui

γ̃
≤ ∥∆C∥ui

γ̃
. (4.60)

Finally

∥Λ̃± − Λ±∥ui ≤ ∥Λ̃± − Λ̂±∥ui + ∥Λ̂± − Λ±∥ui ≤ 2 · ∥∆C∥ui
min{γ, γ̃}

,

as was to be shown. 2
4.5 Perturbation bounds in the Frobenius norms

Theorem 4.4. Suppose (4.26) holds and λ0 ∈ (λ−n , λ
+
1 ) ∩ (λ̃−n , λ̃

+
1 ). Then

∥∆Λ∥2F ≤ 2
(
χ2
1ζ

2
1χ

4
2∥∆A∥2F + χ2

2∥∆Bλ0∥2F + χ2
3ζ

2
2∥∆Cλ0∥2F

)
, (4.61)

where

χ1 =

√
∥Cλ0∥2 + ∥C̃λ0∥2 +

(
∥Ã−1/2B̃λ0∥2 + ∥A−1/2Bλ0∥2

)2
,

χ2 =

√
∥A−1∥2∥Ã−1∥2,

χ3 =

√
∥A−1∥2 + ∥Ã−1∥2,

ζ1 =
1

∥A∥−1/2
2 + ∥Ã∥−1/2

2

,

ζ2 =
1

∥C−1
λ0

∥−1/2
2 + ∥C̃−1

λ0
∥−1/2
2

.

In particular, if ∆A = 0, then the scalar 2 in (4.61) can be replaced by 1 to give

∥∆Λ∥2F ≤ ∥A−1∥22∥∆B∥2F + 2∥A−1∥2ζ22∥λ0∆B +∆C∥2F. (4.62)
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Proof. The assumptions in (4.26) guarantee that Q̃QQ(λ) is still hyperbolic. The assumption
λ0 ∈ (λ−n , λ

+
1 ) ∩ (λ̃−n , λ̃

+
1 ) ensures C̃λ0 ≽ 0 and Cλ0 ≽ 0. Without loss of generality, we

may assumed that both QQQ(λ) and Q̃QQ(λ) have already been shifted, or equivalently λ0 = 0.
This allows to drop the potential subscript “λ0” to Bλ0 , Cλ0 , etc.

Note that KQQQ(λ) = A − λB as in (2.6), where B = diag(−C,A) ≻ 0. Thus, the
hyperbolic eigenvalue problem QQQ(λ) is equivalent to the Hermitian eigenvalue problem KKK
where

KKK = B−1/2A B−1/2 =

[
0 [−C]1/2A−1/2

A−1/2[−C]1/2 −A−1/2BA−1/2

]
.

By the Hoffman-Wielandt therorem [27, 56],

∥∆Λ∥2F ≤ ∥∆KKK∥2F = 2
∥∥∥∆([−C]1/2A−1/2

)∥∥∥2
F
+
∥∥∥∆(A−1/2BA−1/2

)∥∥∥2
F
. (4.63)

The rest of the proof is just to bound the two terms in the right-hand side of (4.63). To
this end, we note that∥∥∥∆([−C]1/2A−1/2

)∥∥∥
F
=
∥∥∥[− C̃

]1/2
∆(A−1/2) +∆([−C]1/2)A−1/2

∥∥∥
F

≤ ∥
[
− C̃

]1/2∥2∥∆(A−1/2)∥F + ∥A−1/2∥2
∥∥∥∆([−C]1/2)∥∥∥

F
, (4.64)

and similarly∥∥∥∆([−C]1/2A−1/2
)∥∥∥

F
=
∥∥∥∆([−C]1/2)Ã−1/2 + [−C]1/2∆(A−1/2)

∥∥∥
F

≤ ∥Ã−1/2∥2
∥∥∥∆([−C]1/2)∥∥∥

F
+ ∥[−C]1/2∥2

∥∥∥∆(A−1/2)
∥∥∥
F
. (4.65)

Also,∥∥∥∆(A−1/2BA−1/2
)∥∥∥

F
=
∥∥∥Ã−1/2B̃∆(A−1/2) + Ã−1/2∆BA−1/2 +∆(A−1/2)BA−1/2

∥∥∥
F

≤
(
∥Ã−1/2B̃∥2 + ∥A−1/2B∥2

)
∥∆(A−1/2)∥F

+ ∥Ã−1/2∥2∥A−1/2∥2∥∆B∥F. (4.66)

Combine8 (4.63) – (4.66) to get

∥∆Λ∥2F ≤ 2

[
χ2
1∥∆(A−1/2)∥2F + χ2

2∥∆B∥2F + χ2
3

∥∥∥∆([−C]1/2)∥∥∥2
F

]
. (4.67)

By [53],

∥∆(A−1/2)∥F ≤ ζ1∥∆(A−1)∥F
≤ ζ1∥Ã−1∥2∥∆A∥F∥Ã−1∥2, (4.68)∥∥∥∆([−C]1/2)∥∥∥

F
≤ ζ2 ∥∆C∥F , (4.69)

where the inequality sign in (4.68) is due to ∆(A−1) = −Ã−1∆AA−1. Now substitute
(4.68) and (4.69) into (4.67) to yield the desired inequality.

8Actually we only use this: (a+ b)2 ≤ 2(a2 + b2) which results in the scalar 2 in (4.67).
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Theorem 4.4 gives a perturbation result for all quadratic eigenvalues ofQQQ(λ). However,
using a different approach, we can obtain results in the Frobenius for only pos- or neg-type
quadratic eigenvalues of QQQ(λ).

Following [20], we know the matrix equation

AX2 +BX + C = 0

has two special solutions. One has all pos-type quadratic eigenvalues of QQQ(λ) as its eigen-
values while the other has all neg-type quadratic eigenvalues of QQQ(λ) as its eigenvalues.
We call the first special solution the pos-type solution and the second special solution the
neg-type solution.

Consider QQQλ0(λ) and set

BA = A−1/2Bλ0A
−1/2, CA = A−1/2Cλ0A

−1/2. (4.70)

Because A−1/2QQQλ0(λ)A
−1/2 = λ2I + λBA + CA is hyperbolic, the following equation

X2 +BAX + CA = 0, (4.71)

has the pos- and neg-type solutions. Denote them by R±, respectively, in the rest of this
section. Both R± can be expressed explicitly by the quantities defined in Theorem 2.5. In
fact,

R± := A1/2U±(Λ± − λ0I)U
−1
± A−1/2. (4.72)

Lemma 4.7. Suppose (4.26) holds and λ0 ≥ max{λ+n , λ̃+n }. Let typ ∈ {+,−}. If

η := 2λ0 − λ̃+n − λ̃−n − ∥R̃typ∥2 − ∥Rtyp∥2 > 0, (4.73)

then

∥∆Rtyp∥F ≤ χ4ζ1χ
2
2

η
∥∆A∥F +

χ2

η
(∥Rtyp∥2∥∆Bλ0∥F + ∥∆Cλ0∥F) , (4.74)

where

χ4 = ∥Rtyp∥2(∥Ã−1/2B̃λ0∥2 + ∥A−1/2Bλ0∥2) + ∥Ã−1/2C̃λ0∥2 + ∥A−1/2Cλ0∥2,

and χ2, ζ1 are as in Theorem 4.4.

Proof. The assumptions in (4.26) guarantee that Q̃QQ(λ) is still hyperbolic. By (4.8) and
(4.9),

eig(BA) ∈ [2λ0 − λ−n − λ+n , 2λ0 − λ−1 − λ+1 ], (4.75)

eig(CA) ∈ [(λ0 − λ−n )(λ0 − λ+n ), (λ0 − λ−1 )(λ0 − λ+1 )]. (4.76)

Subtract R̃2
typ + B̃AR̃typ + C̃A = 0 from R2

typ +BARtyp + CA = 0 to get

(R̃typ + B̃A)∆Rtyp + (∆Rtyp)Rtyp = −(∆BA)Rtyp −∆CA,

or equivalently[
I ⊗ (R̃typ + B̃A) +RT

typ ⊗ I
]
vec(∆Rtyp) = − vec ((∆BA)Rtyp −∆CA) , (4.77)

40



where vec( · ) turns a matrix to a vector by appending the columns of the matrix one after
another with the first column followed by the second column and so on. The equation
(4.77) yields

∥∆Rtyp∥F ≤
∥∥∥∥[I ⊗ (R̃typ + B̃A) +RT

typ ⊗ I
]−1
∥∥∥∥
2

∥(∆BA)Rtyp −∆CA∥F

≤
∥∥∥∥[I ⊗ (R̃typ + B̃A) +RT

typ ⊗ I
]−1
∥∥∥∥
2

(∥Rtyp∥2∥∆BA∥F + ∥∆CA∥F). (4.78)

Choose a τ ≤ λ̃+1 + λ̃−1 − 2λ0 ≤ λ̃+n + λ̃−n − 2λ0 = −η − ∥R̃typ∥2 − ∥Rtyp∥2 < 0. Then

∥I ⊗ R̃typ + I ⊗ (B̃A + τI) +RT
typ ⊗ I∥2

≤ ∥R̃typ∥2 + ∥RT
typ∥2 + ∥B̃A + τI∥2

≤ ∥R̃typ∥2 + ∥Rtyp∥2 + λ̃+n + λ̃−n − 2λ0 − τ

< −η − τ < −τ = |τ |

from which we infer∥∥∥∥(I ⊗ (R̃typ + B̃A) +RT
typ ⊗ I

)−1
∥∥∥∥
2

=

∥∥∥∥∥∥τ−1

(
I ⊗ R̃typ + I ⊗ (B̃A + τI) +RT

typ ⊗ I

τ
− I ⊗ I

)−1
∥∥∥∥∥∥
2

≤ |τ |−1

1− |τ |−1∥I ⊗ R̃typ + I ⊗ (B̃A + τI) +RT
typ ⊗ I∥2

=
1

−τ − ∥I ⊗ R̃typ + I ⊗ (B̃A + τI) +RT
typ ⊗ I∥2

≤ 1

−τ − (−η − τ)
=

1

η
. (4.79)

Like (4.66), (4.68) and (4.69), we can obtain the estimates of ∥∆BA∥F and ∥∆CA∥F. Then
(4.74) follows.

Rtyp is diagonalizable by (4.72). By [7, Theorem 3.1], we have

∥∆Λtyp∥F ≤ κ∥∆Rtyp∥F, (4.80)

where

κ =

√
κ2(A1/2Utyp)κ2(Ã1/2Ũtyp). (4.81)

Theorem 4.5. Suppose λ0 ≥ max{λ+n , λ̃+n }. If (4.73) holds, then

∥∆Λtyp∥F ≤ κχ4ζ1χ
2
2

η
∥∆A∥F +

κχ2

η
(∥Rtyp∥2∥∆Bλ0∥F + ∥∆Cλ0∥F) (4.82)

where κ, η, χ4, χ2, ζ1 are as in Lemma 4.7 and (4.81).
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5 Best approximations from a subspace and Rayleigh-Ritz
procedure

Two most important aspects in solving a large scale eigenvalue problem are

1. building subspaces to which the desired eigenvectors (or invariant subspaces) are
close, and

2. seeking “best possible” approximations from the suitably built subspaces.

In this section, we shall address the second aspect for our current problem at hand, i.e.,
seeking “best possible” approximations to a few quadratic eigenvalues of QQQ(λ) and their
associated quadratic eigenvectors from a given subspace of Cn. We leave the first aspect
to the later sections when we present our computational algorithms.

The concept of “best possible” comes with a quantitative measure as to what constitutes
“best possible”. There may not be such a measure in general. In [47, section 11.4], Parlett
uses three different ways to justify the use of the Rayleigh-Ritz procedure for the symmetric
eigenvalue problem. For the HQEP here, each of the minimization principles in section 3
provides a quantitative measure.

Let QQQ(λ) = λ2A+ λB + C ∈ Cn×n be a hyperbolic quadratic matrix polynomial, and
let Y ⊂ Cn be a subspace of dimension m. We are seeking “best possible” approximations
to a few quadratic eigenvalues of QQQ(λ) using Y. Let Y ∈ Cn×m be a basis matrix of Y.

According to (3.7a) which says (upon substituting i = n− j + 1)

λ+n−j+1 = max
X⊆Cn

dimX=j

min
x∈X
x ̸=0

ρ+(x), (3.7a′)

it is natural to approximate λ+n−j+1, given Y ⊂ Cn, by

µ+m−j+1 := max
X⊆Y

dimX=j

min
x∈X
x ̸=0

ρ+(x), (5.1)

via replacing X ⊆ Cn in (3.7a′) by X ⊆ Y. Any x ∈ X ⊆ Y can be written as x = Y y for
some y ∈ Cm, and thus

ρ+(x) = ρ+(Y y) =
−(yHY HBY y) +

[
(yHY HBY y)2 − 4(yHY HAY y)(yHY HCY y)

]1/2
2(yHY HAY y)

.

Combined with (3.7a′) and this expression for ρ+(x), (5.1) implies that µ+1 , . . . , µ
+
m are the

m pos-type quadratic eigenvalues of Y HQQQ(λ)Y . What this means is that µ+j for 1 ≤ j ≤ m

provide the best approximations to the m largest λ+j , given Y, in the sense of (3.7a). Of

course, some approximations µ+j ≈ λ+n−m+j are more accurate than others.

Similarly, given Y, µ+j for 1 ≤ j ≤ m provide the best approximations to them smallest

λ+j in the sense of (3.7b).

Let µ−1 , . . . , µ
−
m are the m neg-type quadratic eigenvalues of Y HQQQ(λ)Y . The same

argument shows, given Y, µ−j for 1 ≤ j ≤ m provide the best approximations to the m

largest λ−j in the sense of (3.7c), and the best approximations to the m smallest λ−j in the
sense of (3.7d).
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Algorithm 5.1 Rayleigh-Ritz procedure

Given Y ∈ Cn×m which is a basis matrix of Y ⊂ Cn, this algorithm returns approximations
to k extreme quadratic eigenpairs (of pos- or neg-type) of QQQ(λ).

1: solve the QEP for Y HQQQ(λ)Y to get its quadratic eigenvalues µ±j and associated

quadratic eigenvectors y±j .
2: return

• (µ±i , Y y
±
i ) for 1 ≤ i ≤ k as approximations to (λ±i , u

±
i ) for 1 ≤ i ≤ k, or

• (µ±i , Y y
±
i ) for m− k+ 1 ≤ i ≤ m as approximations to (λ±i , u

±
i ) for n− k+ 1 ≤

i ≤ n,

depending on what kind of extreme quadratic eigenpairs are desired.

In summary, we have justified that the quadratic eigenvalues of Y HQQQ(λ)Y yield the
best approximations to some of the largest or smallest pos- or neg-type quadratic eigen-
values of QQQ(λ) in certain respective senses. This statement could sound confusing: how
could the same set of values be the best approximations to some of both the largest and
smallest eigenvalues at the same time? But we point out this is not what the statement
is saying. The key to understand the subtlety is not to forget that they provide the best
approximations under the mentioned senses, and being the best approximations (under
a particular sense) does not necessarily imply that the approximates are good, just that
they are the best (under that particular sense). In practice, Y is built to approximate
either the largest or smallest eigenvalues well, but unlikely both.

Theorems 3.3, 3.4, and 3.5, generalizing Amir-Moéz’s min-max principles and the
Wielandt-Lidskii min-max principles, can also be used to justify that the quadratic eigen-
values of Y HQQQ(λ)Y are candidates for best approximating the largest or smallest pos- or
neg-type quadratic eigenvalues of QQQ(λ), too. For example, according to (3.13a) with any
pre-chosen Φ, we should seek best approximations to λ+i for 1 ≤ i ≤ k by

minimizing Φ(λ+1,X , · · · , λ
+
k,X) subject to R(X) ⊆ Y and rank(X) = k. (3.13a′)

Noticing that any X ∈ Cn×k satisfying R(X) ⊆ Y and rank(X) = k can be written as
X = Y X̂ for some X̂ ∈ Cm×k with rank(X̂) = k, we see that λ+j,X are pos-type quadratic

eigenvalues of [Y X̂]HQQQ(λ)[Y X̂] = X̂H Y HQQQ(λ)Y X̂. Varying X subject to R(X) ⊆ Y and
rank(X) = k is transferred to varying X̂ ∈ Cm×k subject to rank(X̂) = k. Consequently,

min
X

Φ(λ+1,X , · · · , λ
+
k,X) = min

X̂
Φ(µ+

1,X̂
, · · · , µ+

k,X̂
), (5.2)

where µ+
j,X̂

are pos-type quadratic eigenvalues of X̂H Y HQQQ(λ)Y X̂. Apply Theorem 3.3 to

see the right-hand side of (5.2) is Φ(µ+1 , · · · , µ
+
k ), indicating µ

+
j for 1 ≤ j ≤ k provide the

best approximations to the k smallest λ+j , as expected.

The same statement can be made about µ+j as approximations to the largest λ+j , µ
−
j

as approximations to the smallest λ−j or as approximations to the largest λ−j , using other
min-max principles in Theorems 3.3, 3.4, and 3.5.
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In summary, our discussion so far lead to a Rayleigh-Ritz type procedure detailed in
Algorithm 5.1 to compute the best approximations to the desired quadratic eigenpairs of
QQQ(λ), given a pre-built subspace Y.
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6 The steepest descent/ascent method

A common approach to solve a quadratic eigenvalue problem in general, as well as any
polynomial eigenvalue problem, is through linearization which converts the problem into
a linear generalized eigenvalue problem of a matrix pencil [25, 42, 41]. The latter can be
either solved by some iterative methods for a large scale problem or by the QZ algorithm
[2, 44] for a problem of small to modest size (n up to around a few thousands for example).
This approach is usually adopted for QEP without much structure to exploit. For HQEP,
however, it is a different story – there is much to exploit. Most recent development includes
the solvent approach [10, 21, 24, 61] for certain kinds of QEPs among which is HQEP [20].
Numerical evidence indicates that this solvent approach is rather efficient for QEP of small
to modest sizes.

In this paper, we focus on optimization approaches based on various min-max principles
previously established and the new ones established here. They are iterative methods and
intended for solving large scale HQEP.

The equations in (3.8):

λ+1 = min
x ̸=0

ρ+(x), λ+n = max
x ̸=0

ρ+(x), (3.8a)

λ−1 = min
x ̸=0

ρ−(x), λ−n = max
x ̸=0

ρ−(x). (3.8b)

naturally suggest using some optimization techniques, including the steepest descent/ascent
or CG-type method, to compute the first or last quadratic eigenpair (λ±j , u

±
j ) as in the

case of the standard Hermitian eigenvalue problem [3, 14]. Block variations can also be
devised to simultaneously compute the first or last few quadratic eigenpairs (λ±j , u

±
j ) again

as in the case of the standard Hermitian eigenvalue problem [3, 40].

6.1 Gradients

To apply any of optimization techniques, we need to compute the gradients of ρ±(x). To
this end, we use ρ(x) for either ρ+(x) or ρ−(x). As x is perturbed to x + p, where p
is assumed small in magnitude, ρ(x + p) is changed to ρ(x + p) = ρ(x) + η, where the
magnitude η is comparable to ∥p∥. We have by (3.1)

[ρ(x) + η]2 (x+ p)HA(x+ p) + [ρ(x) + η] (x+ p)HB(x+ p) + (x+ p)HC(x+ p) = 0

which gives, upon noticing f(ρ(x), x) = 0, that

[2ρ(x)xHAx+ xHBx]η + pH[ρ(x)2Ax+ ρ(x)Bx+ Cx]

+ [ρ(x)2Ax+ ρ(x)Bx+ Cx]Hp+O(∥p∥2) = 0

and thus

η = −p
H[ρ(x)2Ax+ ρ(x)Bx+ Cx] + [ρ(x)2Ax+ ρ(x)Bx+ Cx]Hp

2ρ(x)xHAx+ xHBx
.

Therefore the gradient of ρ(x) at x is

∇ρ(x) = −2[ρ(x)2A+ ρ(x)B + C]x

2ρ(x)xHAx+ xHBx
,

45



or equivalently

∇ρ±(x) = ∓2QQQ(ρ±(x))x

ς(x)
, (6.1)

where we have used (3.5).
It is important to notice that the gradient ∇ρ±(x) is parallel to the residual vector

r±(x) := [ρ±(x)
2A+ ρ±(x)B + C]x =QQQ(ρ±(x))x (6.2)

whose normalized norm is commonly used to determine if the approximate eigenpair
(ρ±(x), x) meets a pre-set tolerance rtol:

∥r±(x)∥
|ρ±(x)|2∥Ax∥+ |ρ±(x)| ∥Bx∥+ ∥Cx∥

< rtol. (6.3)

If (6.3) holds for (ρ+(x), x), then it is accepted as a converged pos-type quadratic eigen-
pairs, and similarly for (ρ−(x), x). Here which vector norm ∥ · ∥ to use is usually inconse-
quential, but for the sake of convenience. More conservatively, ∥Ax∥ in the denominator
should be replaced by ∥A∥ ∥x∥, and likewise for ∥Bx∥ and ∥Cx∥ there. For large sparse
matrices, the use of ∥Ax∥, ∥Bx∥, and ∥Cx∥ is more economical because of their availability.

Beside being easily implementable, the use of (6.3) can also be rationalized by the exist-
ing backward error analysis of approximate eigenpairs for polynomial eigenvalue problems
[25, 36, 62].

6.2 The steepest descent/ascent method

Now the steepest descent/ascent method for computing one of λ±ℓ for ℓ ∈ {1, n} can be
readily given. For this purpose, we fix two parameters “typ” and ℓ with varying ranges as

typ ∈ {+,−}, ℓ ∈ {1, n} (6.4)

to mean that we are to compute the quadratic eigenpair (λtypℓ , utypℓ ). A key step of the
method is the following line-search problem

topt = argopt
t∈C

ρtyp(x+ t p), (6.5)

where x is the current approximation to utypℓ (thus no reason to let x = 0), p is the search
direction, and

argopt =

{
argmin, for ℓ = 1,

argmax, for ℓ = n.
(6.6)

The next approximate quadratic eigenvector is

y =

{
x+ topt p, if topt is finite,

p, otherwise.
(6.7)

But the line-search problem (6.5) doesn’t seem to be solvable straightforwardly by simple
calculus as for the standard symmetric eigenvalue problem (see, e.g., [3, 14, 40, 70]), given
the (complicated) expressions for ρtyp in (3.2). Fortunately, the theory we developed in
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Algorithm 6.1 Steepest descent/ascent method

Given an initial approximation xxx0 to utypℓ , and a relative tolerance rtol, the algorithm

computes an approximate pair to (λtypℓ , utypℓ ) with the prescribed rtol.

1: xxx0 = xxx0/∥xxx0∥, ρρρ0 = ρtyp(xxx0), rrr0 = rtyp(xxx0);
2: for i = 0, 1, . . . do
3: if ∥rrri∥/(|ρρρi|2∥Axxxi∥+ |ρρρi| ∥Bxxxi∥+ ∥Cxxxi∥) ≤ rtol then
4: BREAK;
5: else
6: solve QEP for Y H

i QQQ(λ)Yi, where Yi = [xxxi, rrri] to get its quadratic eigenvalues µ±j
as in (6.8) and corresponding quadratic eigenvectors y±j ;

7: select the next approximate quadratic eigenpair (µ, y) = (µtypj , Yiy
typ
j ) according

to the table (6.9);
8: xxxi+1 = y/∥y∥, ρρρi+1 = µ, rrri+1 = rtyp(xxxi+1);
9: end if

10: end for
11: return (ρρρi,xxxi) as an approximate quadratic eigenpair to (λtypℓ , utypℓ ).

section 5 points us another way to look at it and thus solve it with ease. In fact, the problem
is equivalent to find the best possible approximation within the subspace Y = R([x, p]).
Suppose x and p are linearly independent9 and let Y = [x, p]. Solve the 2-by-2 HQEP for
Y HQQQ(λ)Y to get its quadratic eigenvalues

µ−1 ≤ µ−2 < µ+1 ≤ µ+2 (6.8)

and corresponding quadratic eigenvectors y±j ∈ C2. We then have the following table
for selecting the next approximate quadratic eigenpair, according to the parameter pair
(typ, ℓ).

(typ, ℓ) current approx. next approx.

(+, 1) (ρ+(x), x) (µ+1 , Y y
+
1 )

(+, n) (ρ+(x), x) (µ+2 , Y y
+
2 )

(−, 1) (ρ−(x), x) (µ−1 , Y y
−
1 )

(−, n) (ρ−(x), x) (µ−2 , Y y
−
2 )

(6.9)

In light of this alternative way to solve (6.5), the resulting steepest descent/ascent method
is summarized in Algorithm 6.1.

Lemma 6.1. For (6.5) – (6.7), pHrtyp(y) = 0.

Proof. If x and p are linearly dependent (the trivial case p = 0 included), than p = αx
and y = βx for some scalars α and β. Thus ρtyp(y) = ρtyp(x), rtyp(y) = βrtyp(x), and
pHrtyp(y) = αβxHrtyp(x) = 0 by the definition of ρtyp(x).

Suppose x and p are linearly independent. If |topt| = ∞, then y = p. Thus pHrtyp(y) =
yHrtyp(y) = 0. Consider the case that topt is finite. Let t = topt + s. For tiny s, we have

ρ(y + sp) = ρ(y)−
2Re

(
s[ρ(y)2Ay + ρ(y)By + Cy]Hp

)
2ρ(y) yHAy + yHBy

+ O(s2),

9Otherwise, no improvement is expected by optimizing ρtyp(x+ tp) because then ρtyp(x+ tp) ≡ ρtyp(x)
for all scalar t.
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where we drop the subscript “typ” to ρtyp( · ) for convenience. Since mins ρ(y + sp) over
s ∈ C is attained at s = 0, it must hold that [ρ(y)2Ay + ρ(y)By + Cy]Hp = 0, as was to
be shown.

6.3 The extended steepest descent/ascent method

In Algorithm 6.1, the search space is spanned by

xxxi, rrri =QQQ(ρρρi)xxxi.

Thus it is the second order Krylov subspace K2(QQQ(ρρρi),xxxi) of QQQ(ρρρi) on xxxi. Inspired by
the inverse free Krylov subspace method [18] which seeks to improve the steepest descent
method for the Hermitian generalized eigenvalue problem by extending the search space
to a Krylov subspace, we may improve Algorithm 6.1 in the same way, i.e., using a high
order Krylov subspace

Km(QQQ(ρρρi),xxxi) = span{xxxi,QQQ(ρρρi)xxxi, . . . , [QQQ(ρρρi)]
m−1xxxi} (6.10)

as the search space. Let Yi be a basis matrix of this Krylov subspace. We then solve10 the
m-by-m HQEP for Y H

i QQQ(λ)Yi to get its quadratic eigenvalues

µ−1 ≤ · · · ≤ µ−m < µ+1 ≤ · · · ≤ µ+m (6.11)

and corresponding quadratic eigenvectors y±j . We then have the following table for select-
ing the next approximate quadratic eigenpair, according to the parameter pair (typ, ℓ).

(typ, ℓ) current approx. next approx.

(+, 1) (ρ+(xxxi),xxxi) (µ+1 , Yiy
+
1 )

(+, n) (ρ+(xxxi),xxxi) (µ+m, Yiy
+
m)

(−, 1) (ρ−(xxxi),xxxi) (µ−1 , Yiy
−
1 )

(−, n) (ρ−(xxxi),xxxi) (µ−m, Yiy
−
m)

(6.12)

We summarize the resulting method, called the Extended Steepest Descent/Ascent method,
into Algorithm 6.2.

When m = 2, Algorithm 6.2 reduces to the steepest descent/ascent method given in
Algorithm 6.1.

6.4 Convergence analysis

While our convergent results are stated for all four possible (typ, ℓ) ∈ {(±, 1), (±, n)}, our
proofs will be presented mostly for one (typ, ℓ)

(typ, ℓ) = (+, 1), and thus argopt = argmin in (6.6) (6.13)

to save space. Proofs for other (typ, ℓ) can be obtained with minor changes accordingly.
For convenience, in our proofs we will drop the pos-type sign “+” in r+( · ), ρ+( · ), and

10Often Yi ∈ Cn×m, but there is a possibility that dimKm(QQQ(ρρρi),xxxi) < m. When this occurs, Yi will
have fewer columns than m, and the rest of the development is still valid with minor changes. This is rare,
especially in actual computations. For simplicity of presentation, we will assume that Yi has m columns.
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Algorithm 6.2 Extended steepest descent/ascent method

Given an initial approximation xxx0 to utypℓ , and a relative tolerance rtol, and the search

space dimension m, the algorithm computes an approximate pair to (λtypℓ , utypℓ ) with the
prescribed rtol.

1: xxx0 = xxx0/∥xxx0∥, ρρρ0 = ρtyp(xxx0), rrr0 = rtyp(xxx0);
2: for i = 0, 1, . . . do
3: if ∥rrri∥/(|ρρρi|2∥Axxxi∥+ |ρρρi| ∥Bxxxi∥+ ∥Cxxxi∥) ≤ rtol then
4: BREAK;
5: else
6: compute a basis matrix Yi for the Krylov subspace Km(QQQ(ρρρi),xxxi) in (6.10);
7: solve QEP for Y H

i QQQ(λ)Yi to get its quadratic eigenvalues µ±j as in (6.11) and

corresponding quadratic eigenvectors y±j ;

8: select the next approximate quadratic eigenpair (µ, y) = (µtypj , Y ytypj ) according
to the table in (6.12);

9: xxxi+1 = y/∥y∥, ρρρi+1 = µ, rrri+1 = rtyp(xxxi+1);
10: end if
11: end for
12: return (ρρρi,xxxi) as an approximate quadratic eigenpair to (λtypℓ , utypℓ ).

u+j with an understanding that they are all for the pos-type, even though occasionally, the
sign is still written out at critical places.

By Theorem 2.5, QQQ(λ) has n linearly independent pos-type quadratic eigenvectors
u+j for 1 ≤ j ≤ n and n linearly independent neg-type quadratic eigenvectors u−j for
1 ≤ j ≤ n. Define for each (pos/neg-type) quadratic eigenvalue µ its corresponding
quadratic eigenspace

Uµ = {x ∈ Cn |QQQ(µ)x = 0} =
⊕

λtypi =µ

span{utypi }.

We’ll use the angle θ(xxxi,Uµ) from xxxi to an eigenspace Uµ:

cos θ(xxxi,Uµ) := min
0̸=u∈Uµ

|uHxxxi|
∥xxxi∥2∥u∥2

to measure the convergence of xxxi towards Uµ. Note 0 ≤ θ(xxxi,Uµ) ≤ π/2.
For the sake of our convergence analysis, it is convenient for us to execute Algo-

rithms 6.1 and 6.2 without their Lines 3 and 4 so that xxxi, rrri, and ρρρi are defined for all
i ≥ 0. But without the two lines, we need to be clear about the case when rrri = 0 for
some i. When it occurs, Km(QQQ(ρρρi),xxxi) = span{xxxi} for any m ≥ 2. For Algorithm 6.2, all
subsequent xxxj , ρρρj , and rrrj for j > i are well-defined. In fact, we will have

ρρρi = ρρρi+1 = · · · , xxxi = xxxi+1 = · · · , rrri = rrri+1 = · · · = 0. (6.14)

But for Algorithm 6.1, all we have to do is to modify its Line 6 to “Yi = xxxi if rrri = 0” and
then xxxj , ρρρj , and rrrj for j > i are again well-defined and they again satisfy (6.14).

Theorem 6.1. Let the sequences {ρρρi}, {rrri}, {xxxi} be produced by Algorithm 6.1/6.2.
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1. Only one of the following two mutually exclusive situations can occur:

(a) For some i, (6.14) holds, and (ρρρi,xxxi) is a quadratic eigenpair of QQQ(λ).

(b) ρρρi is strictly monotonically decreasing for (typ, ℓ) ∈ {(±, 1)} or strictly mono-
tonically increasing for (typ, ℓ) ∈ {(±, n)}, rrri ̸= 0 for all i, and no two xxxi are
linearly dependent.

2. xxxHi rrri = 0, rrrHi rrri+1 = 0, xxxHi rrri+1 = 0 for Algorithm 6.1;

3. xxxHi rrri = 0, Y H
i rrri+1 = 0 for Algorithm 6.2;

4. In the case of 1(b),

(a) ρρρi → ρ̂ ∈ [λtyp1 , λtypn ] as i→ ∞,

(b) rrri ̸= 0 for all i but rrri → 0 as i→ ∞,

(c) ρ̂ is a quadratic eigenvalue of QQQ(λ), and any limit point x̂ of {xxxi} is a corre-
sponding quadratic eigenvector, i.e., QQQ(ρ̂)x̂ = 0,

(d) θ(xxxi,Uρ̂) → 0 as i→ ∞.

Proof. As we remarked at the beginning of this subsection, we will prove the claims only
for (typ, ℓ) = (+, 1).

There are only two possibilities: either rrri = 0 for some i or rrri ̸= 0 for all i. If rrri = 0 for
some i, then ρρρi = ρρρi+1 and xxxi = xxxi+1 because ρ(xxxi + trrri) ≡ ρ(xxxi). Consequently rrri+1 = 0,
and the equations in (6.14) hold. Consider now rrri ̸= 0 for all i. Note that rrri ̸= 0 implies
∇ρρρi ̸= 0, and so ρ(xxxi − s∇ρρρi) < ρ(xxxi) for some s with sufficiently tiny |s|. This in turn
implies ρ(xxxi + trrri) < ρ(xxxi) for some t with sufficiently tiny |t| and thus

ρρρi+1 = inf
t
ρ(xxxi + trrri) < ρ(xxxi).

Therefore ρρρi is strictly monotonically decreasing. No two xxxi are linear dependent because
linear dependent xxxi and xxxj produce ρρρi = ρρρj . This proves item 1.

For item 2, xxxHi rrri = xxxHi QQQ(ρρρi)xxxi = 0. Since ρ(xxxi+1) = mint ρ(xxxi + trrri), by Lemma 6.1,
rrrHi rrri+1 = 0. We now prove xxxHi rrri+1 = 0. If rrri = 0, then all rrrj = 0 for j > i – no proof is
necessary. Consider rrri ̸= 0. Then ρρρi+1 < ρρρi. Note xxxi+1 is a linear combination of xxxi and
rrri; so we write xxxi+1 = αixxxi + βirrri for some scalar αi and βi. We know βi ̸= 0; otherwise
xxxi+1 = αixxxi to yield ρρρi+1 = ρρρi which contradicts ρρρi+1 < ρρρi. Therefore

ρρρi+1 = ρ(rrri + (αi/βi)xxxi) = inf
t
ρ(rrri + txxxi).

Apply Lemma 6.1 with x = rrri and p = xxxi to get xxxHi rrri+1 = 0.
For item 3, again xxxHi rrri = xxxHi QQQ(ρρρi)xxxi = 0. Let xxxi+1 = Yiy. Then for each column z of

Yi, we have
ρρρi+1 = ρ(Yiy) = inf

t
ρ(Yiy + tz).

Apply Lemma 6.1 with x = Yiy and p = z to get zHrrri+1 = 0. Since z is any column of Yi,
we conclude Y H

i rrri+1 = 0.
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Now for item 4(a), since ρρρi is strictly monotonically decreasing and bounded from
below since ρρρi ≥ λ+1 , it is convergent and ρρρi → ρ̂ ∈ [λ+1 , λ

+
n ] because ρρρi = ρ(xxxi) ∈ [λ+1 , λ

+
n ]

for all i by Theorem 3.1.
For item 4(b), we have ∥rrri∥ = ∥(Aρρρ2i + Bρρρi + C)xxxi∥ ≤ ∥A∥(λ+n )2 + ∥B∥ |λ+n | + ∥C∥

since ∥xxxi∥ = 1; so both {rrri} and {xxxi} are bounded sequences. It suffices to show that
any limit point of {rrri} is the zero vector. Assume, to the contrary, {rrri} has a nonzero
limit point r̂, i.e., rrrij → r̂, where {rrrij} is a subsequence of {rrri}. Since {xxxij} is bounded,
it has a convergent subsequence. Without loss of generality, we may assume xxxij itself is
convergent and xxxij → x̂ as j → ∞. We have r̂Hx̂ = 0 and ∥x̂∥ = 1 because rrrHijxxxij = 0 and

∥xxxij∥ = 1. Now consider the quadratic eigenvalue problem for

QQQij (λ) := Y H
ij QQQ(λ)Yij =

[
xxxHijQQQ(λ)xxxij xxxHijQQQ(λ)rrrij
rrrHijQQQ(λ)xxxij rrrHijQQQ(λ)rrrij

]
, (6.15)

where Yij = [xxxij , rrrij ]. Since rrrHijxxxij = 0, rank(Yij ) = 2, and thus QQQij (λ) is hyperbolic.

Denote by µ±j;k its quadratic eigenvalues. It can be seen that

λ−1 ≤ µ−j;1 ≤ µ−j;2 ≤ λ−n < λ+1 ≤ µ+j;1 ≤ µ+j;2 ≤ λ+n . (6.16)

Then11 λ+1 ≤ ρρρij+1 ≤ µ+j;1. Let

Q̂QQ(λ) = lim
j→∞

QQQij (λ)

whose quadratic eigenvalues are denoted by µ̂±i . By the continuity of the quadratic eigen-
values with respect to the entries of coefficient matrices of a quadratic polynomial with a
nonsingular leading coefficient matrix, we know µ±j;i → µ̂±i as j → ∞, and thus

λ−1 ≤ µ̂−1 ≤ µ̂−2 ≤ λ−n < λ+1 ≤ µ̂+1 ≤ µ̂+2 ≤ λ̂+n . (6.17)

Notice by (6.16) and (6.17)

λ+1 ≤ ρρρij+1 ≤ µ+j;1 ⇒ µ̂−2 < λ+1 ≤ ρ̂ ≤ µ̂+1 . (6.18)

On the other hand, by (6.16), we have

Q̂QQ(ρ̂) = lim
j→∞

QQQij (ρρρij ) = lim
j→∞

[
0 rrrHijrrrij

rrrHijrrrij rrrHijQQQ(ρρρij )rrrij

]
=

[
0 r̂Hr̂
r̂Hr̂ r̂HQQQ(ρ̂)r̂

]
which is indefinite because r̂Hr̂ > 0. But by (6.18) and Theorem 2.1, Q̂QQ(ρ̂) ≼ 0, a
contradiction. So r̂ = 0, as was to be shown.

For item 4(c), since ∥xxxi∥ = 1, {xxxi} has at least one limit point. Let x̂ be any limit
point of xxxi, i.e., xxxij → x̂. Take limit at the both sides of QQQ(ρρρij )xxxij = rrrij to get QQQ(ρ̂)x̂ = 0,
i.e., (ρ̂, x̂) is a quadratic eigenpair.

For item 4(d), write θi = θ(xxxi,Uρ̂) for convenience and write12 xxxi = ûi cos θi+ v̂i sin θi,
where ûi ∈ Uρ̂, v̂i ∈ U⊥

ρ̂ (the orthogonal complement of Uρ̂), and ∥ûi∥2 = ∥v̂i∥2 = 1. Then

rrri =QQQ(ρρρi)xxxi = (ρρρi − ρ̂) [(ρρρi + ρ̂)A+B] ûi cos θi +QQQ(ρρρi)v̂i sin θi. (6.19)

11For Algorithm 6.1, ρρρij+1 = µ+
j;1.

12Without loss of generality, we may assume ∥ · ∥2 is used in the algorithms.
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We claim that QQQ(ρρρi)v̂i sin θi → 0. To see this, we notice

∥(ρρρi + ρ̂)A+B∥2 ≤ 2max{|λ+1 |, |λ
+
n |} ∥A∥2 + ∥B∥2,

rrri → 0, and ρρρi − ρ̂ → 0. Thus QQQ(ρρρi)v̂i sin θi → 0 by (6.19). The null space of QQQ(ρ̂) is Uρ̂.
Since QQQ(ρ̂) is Hermitian,

∥QQQ(ρ̂)v∥2 ≥ γ∥v∥2 for any v ∈ U⊥
ρ̂ ,

where γ = min |ξ| taken over all nonzero ξ ∈ eig(QQQ(ρ̂)). Therefore ∥QQQ(ρ̂)v̂i∥2 ≥ γ. Because
ρρρi → ρ̂, for sufficiently large i we have ∥QQQ(ρρρi)v̂i∥2 ≥ γ/2 and thus

∥QQQ(ρρρi)v̂i sin θi∥2 ≥ (γ/2) sin θi,

implying sin θi → 0 which leads to θi → 0 because 0 ≤ θi ≤ π/2.

Theorem 6.1 ensures us the global convergence of Algorithm 6.1/6.2, but gives no
indication as how fast the convergence may be. For that, we turn to our next theorem –
Theorem 6.2 – which provides an asymptotic rate of the sequences {ρρρi} generated by the
algorithms. Both theorems are reminiscent of [18, Theorem 3.2] and [18, Theorem 3.4],
respectively. But Theorem 6.2 about the rate of convergence is much more difficult to
prove than [18, Theorem 3.4]. Because of that, we will devote the entire subsection 6.5
for its proof.

We introduce a few new notations: for any x ̸= 0,

a(x) =
xHAx

xHx
, b(x) =

xHBx

xHx
, c(x) =

xHCx

xHx
. (6.20)

Also recall QQQλ0(λ) :=QQQ(λ+ λ0) in (4.5) for a given shift λ0. Accordingly,

b0(x) =
xHBλ0x

xHx
=
xH(2λ0A+B)x

xHx
, c0(x) =

xHCλ0x

xHx
=
xHQQQ(λ0)x

xHx
. (6.21)

Theorem 6.2. Suppose λtyp1 ≤ ρρρ0 < λtyp2 if ℓ = 1 or λtypn−1 < ρρρ0 ≤ λtypn if ℓ = n, and let
the sequences {ρρρi}, {rrri}, {xxxi} be produced by Algorithm 6.2. Given a shift λ0 ≥ λ+n , define
Bλ0, Cλ0 by (4.5).

1. As i → ∞, ρρρi monotonically converges to ρ̂ = λtypℓ , and xxxi converges to utypℓ in

direction, i.e., θ(xxxi, u
typ
ℓ ) → 0.

2. The eigenvalues13 ωj of QQQ(ρρρi) can be ordered as

ω1 > 0 > ω2 ≥ · · · ≥ ωn if (typ, ℓ) ∈ {(+, 1), (−, n)}, or, (6.22a)

ω1 < 0 < ω2 ≤ · · · ≤ ωn if (typ, ℓ) ∈ {(+, n), (−, 1)}. (6.22b)

Denote by v1 the eigenvector of QQQ(ρρρi) associated with its eigenvalue ω1. If ρρρi is
sufficiently close to λtypℓ , then

|ρρρi+1−λtypℓ | ≤ ε2m|ρρρi−λ
typ
ℓ |+(1− ε2m)εmη(v1)|ρρρi−λ

typ
ℓ |3/2+O(|ρρρi−λtypℓ |2), (6.23)

13Their dependency upon i is suppressed for clarity.
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where

εm = min
g∈Pm−1,g(ω1) ̸=0

max
i ̸=1

|g(ωi)|
|g(ω1)|

, (6.24)

τA =
1

|ω2|
∥A∥2
a(v1)

, τB =
1

|ω2|
∥Bλ0∥2
b0(v1)

, τC =
1

|ω2|
∥Cλ0∥2
c0(v1)

, (6.25)

η(v1) = 3τ
1/2
A + 2

(b0(v1))
2τ

1/2
B + 2a(v1)c0(v1)(τ

1/2
A + τ

1/2
C )

ς0(v1)2
, (6.26)

and Pm−1, the set of polynomials of degree no higher than m− 1.

3. Denote14 by γ and Γ the smallest and largest positive eigenvalue of{
−QQQ(λtypℓ ) for (typ, ℓ) ∈ {(+, 1), (−, n)},
QQQ(λtypℓ ) for (typ, ℓ) ∈ {(+, n), (−, 1)}.

If ρρρi is sufficiently close to λtypℓ , then

|ρρρi+1 − λtypℓ | ≤ ε2|ρρρi − λtypℓ |+ (1− ε2)εη|ρρρi − λtypℓ |3/2 +O(|ρρρi − λtypℓ |2), (6.27)

where

ε = 2

[(√
κ+ 1√
κ− 1

)m−1

+

(√
κ+ 1√
κ− 1

)−(m−1)
]−1

, κ =
Γ

γ
, (6.28)

η =

√
1

|γ|

[
3

√
∥A∥2
a(u)

+ 2
b0(u)

2

ς0(u)2

√
∥Bλ0∥2
b0(u)

+ 4
a(u)c0(u)

ς0(u)2

(√
∥A∥2
a(u)

+

√
∥Cλ0∥2
c0(u)

)]
(6.29)

≤

√
1

|γ|

[
3

√
∥A∥2
a(u)

+ 2
∥Bλ0∥22 + 4∥A∥2∥Cλ0∥2
b(u)2 − 4a(u)c(u)

]
, (6.30)

and u = utypℓ for short.

6.5 Proof of Theorem 6.2

We recall (3.5) to see

ς(x) : =
[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2
= ±xH[2ρ±(x)A+B]x

= ±xHQQQ′(ρ±(x))x, (6.31)

and ς0(x) = ς(x)/∥x∥22. For a perturbation E ∈ Cn×n which is assumed Hermitian, we
define

QQQE(λ) :=QQQ(λ) + E = λ2A+ λB + C + E. (6.32)

14QQQ(λtyp
ℓ ) is singular and, by Theorem 2.1, negative semidefinite if (typ, ℓ) ∈ {(+, 1), (−, n)} or positive

semidefinite if (typ, ℓ) ∈ {(+, n), (−, 1)}.
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When QQQE(λ) is also hyperbolic, the pos- and neg-type Rayleigh quotients, denoted by
ρE;±, can be defined for QQQE(λ). Accordingly, we will define ςE and ςE;0, too. Specifically,

ρE;±(x) =
−(xHBx)±

{
(xHBx)2 − 4(xHAx)(xH[C + E]x)

}1/2
2(xHAx)

, (6.33)

and

ςE(x) : =
{
(xHBx)2 − 4(xHAx)(xH[C + E]x)

}1/2
(6.34a)

= ±xH[2ρE;±(x)A+B]x,

ςE;0(x) : =
ςE(x)

∥x∥22
. (6.34b)

Lemma 6.2. Suppose QQQE(λ) in (6.32) is also hyperbolic.

1. Let (λ+1 , u
+
1 ) and (µ+1 , v

+
1 ) be the smallest quadratic eigenpair15 with the pos-type of

QQQ(λ) and QQQE(λ), respectively. Then

λmin(E)

ς0(u
+
1 )

≤ λ+1 − µ+1 ≤ λmax(E)

ςE;0(v
+
1 )
. (6.35)

2. Let (λ+n , u
+
n ) and (µ+n , v

+
n ) be the largest quadratic eigenpair with the pos-type of QQQ(λ)

and QQQE(λ), respectively. Then

λmin(E)

ς0(v
+
n )

≤ λ+n − µ+n ≤ λmax(E)

ςE;0(u
+
n )
. (6.36)

3. Let (λ−1 , u
−
1 ) and (µ−1 , v

−
1 ) be the smallest quadratic eigenpair with the neg-type of

QQQ(λ) and QQQE(λ), respectively. Then

λmin(E)

ς0(v
−
1 )

≤ µ−1 − λ−1 ≤ λmax(E)

ςE;0(u
−
1 )
. (6.37)

4. Let (λ−n , u
−
n ) and (µ−n , v

−
n ) be the largest quadratic eigenpair with the neg-type of QQQ(λ)

and QQQE(λ), respectively. Then

λmin(E)

ς0(u
−
n )

≤ µ−n − λ−n ≤ λmax(E)

ςE;0(v
−
n )
. (6.38)

Proof. As in the proof of Lemma 4.4, we have

µ+1 = min
x
ρE;+(x) ≤ ρE;+(u

+
1 ) ≤ ρ+(u

+
1 ) + δ+ub(u

+
1 ) = λ+1 + δ+ub(u

+
1 )

which gives
µ+1 − λ+1 ≤ δ+ub(u

+
1 ), λ+1 − µ+1 ≤ δ̃+ub(v

+
1 ), (6.39)

15By the smallest (largest) pos/neg-type quadratic eigenpair, we mean the quadratic eigenvalue in ques-
tion is the smallest (largest) of that given type. The same naming is used for the usual linear eigenpair,
too.
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where the second inequality is actually obtained from the first one there by switching the
roles of QQQ(λ) and QQQE(λ). Now use (4.42) in the proof of Theorem 4.1 for ∆A = ∆B = 0
and ∆C = E to get item 1.

Similarly, we have

λ+n = max
x

ρ+(x) ≥ ρ+(v
+
n ) ≥ ρE;+(v

+
n )− δ+ub(v

+
n ) = µ+n − δ+ub(v

+
n )

which gives
µ+n − λ+n ≤ δ+ub(v

+
n ), λ+n − µ+n ≤ δ̃+ub(u

+
n ), (6.40)

where the second inequality is actually obtained from switching the roles of QQQ(λ) and
QQQE(λ). Now use (4.42) in the proof of Theorem 4.1 for ∆A = ∆B = 0 and ∆C = E to
get item 2.

Items 3 and 4 are corollaries of items 2 and 1 applied to QQQ(−λ) and QQQE(−λ).

Lemma 6.3. QQQE(λ) with E = −σI is hyperbolic if

σ > −(λ+1 − λ−n )
2λmin(A)

4
. (6.41)

Proof. For any vector x ̸= 0, we have

(xHBx)2 − 4(xHAx)(xH[C − σI]x) = (xHBx)2 − 4(xHAx)(xHCx) + 4σ(xHAx)(xHx)

= [ρ+(x)− ρ−(x)]
2(xHAx)2 + 4σ(xHAx)(xHx)

≥ (xHAx)(xHx)

[
(λ+1 − λ−n )

2x
HAx

xHx
+ 4σ

]
≥ (xHAx)(xHx)

[
(λ+1 − λ−n )

2λmin(A) + 4σ
]

> 0,

where the last inequality holds because of (6.41).

So ςE and ςE;0 are well-defined for any E = −σI satisfying (6.41). To emphasize such
special E = −σI, we introduce notations

ςσ(x) := ςE(v), ςσ;0(v) := ςE;0(v) for E = −σI. (6.42)

For ρρρ ∈ (λtyp1 , λtypn ), it follows from Theorem 2.1 that the largest eigenvalue, denoted
by ω1, of QQQ(ρρρ) is nonnegative, and thus this σ = ω1 automatically satisfies (6.41). But
the smallest eigenvalue, denoted also by ω1, of QQQ(ρρρ) is non-positive and (6.41) may fail for
σ = ω1 unless |ω1| is sufficiently tiny.

Lemma 6.4. Given λtyp1 ≤ ρρρ ≤ λtypn , let (ω1, v1) be the largest eigenpair QQQ(ρρρ) if (typ, ℓ) ∈
{(+, 1), (−, n)} or the smallest eigenpair QQQ(ρρρ) if (typ, ℓ) ∈ {(+, n), (−, 1)}. If (6.41) holds
with σ = ω1, then for the four different (typ, ℓ)

ς0(u
+
1 )

ςω1;0(v1)
(ρρρ− λ+1 ) ≤

ω1

ςω1;0(v1)
≤ ρρρ− λ+1 for (typ, ℓ) = (+, 1), (6.43a)

ςω1;0(u
+
n )

ς0(v1)
(λ+n − ρρρ) ≤ −ω1

ς0(v1)
≤ λ+n − ρρρ for (typ, ℓ) = (+, n), (6.43b)
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ςω1;0(u
−
1 )

ς0(v1)
(ρρρ− λ−1 ) ≤

−ω1

ς0(v1)
≤ ρρρ− λ−1 for (typ, ℓ) = (−, 1), (6.43c)

ς0(u
−
n )

ςω1;0(v1)
(λ−n − ρρρ) ≤ ω1

ςω1;0(v1)
≤ λ−n − ρρρ for (typ, ℓ) = (−, n). (6.43d)

Moreover, for ρρρ sufficiently close to λtypℓ ,

ω1

ςω1;0(v1)
= ρρρ− λ+1 +O([ρρρ− λ+1 ]

2) for (typ, ℓ) = (+, 1), (6.44a)

−ω1

ς0(v1)
= λ+n − ρρρ+O([λ+n − ρρρ]2) for (typ, ℓ) = (+, n), (6.44b)

−ω1

ς0(v1)
= ρρρ− λ−1 +O([ρρρ− λ−1 ]

2) for (typ, ℓ) = (−, 1), (6.44c)

ω1

ςω1;0(v1)
= λ−n − ρρρ+O([λ−n − ρρρ]2) for (typ, ℓ) = (−, n). (6.44d)

Proof. Consider the case (typ, ℓ) = (+, 1). We have ω1 ≥ 0 and [QQQ(ρρρ)− ω1I] v1 = 0. Since
ω1 is the largest eigenvalue of QQQ(ρρρ), QQQ(ρρρ)−ω1I ≼ 0. Thus, (ρρρ, v1) is the smallest pos-type
quadratic eigenpair of QQQE(λ) with E = −ω1I. By Lemma 6.2,

ω1

ςE;0(v1)
≤ ρρρ− λ+1 ≤ ω1

ς0(u1)

which gives (6.43a). To prove (6.44a), we denote by α(t) the largest eigenvalue of QQQ(t)
near t = λ+1 . Then α(λ

+
1 ) = 0 and α(ρρρ) = ω1. Note that

QQQ(ρρρ)v1 = ω1v1 ⇒ vH1QQQ(ρρρ)v1 = ω1v
H
1 v1 ⇒ vH1 [QQQ(ρρρ)− ω1I]v1 = 0,

i.e., ρρρ is a Rayleigh quotient of QQQE(λ) with E = −ω1I. Therefore

α′(ρρρ) =
vH1QQQ

′(ρρρ)v1

vH1 v1
=
vH1QQQ

′
E(ρρρ)v1

vH1 v1
= ςω1;0(v1),

where the first equality is due to [56, p.183], and the third equality due to (6.31). Finally
α(λ+1 ) = α(ρρρ) + ςω1;0(v1)(λ

+
1 − ρρρ) +O(|λ+1 − ρρρ|2) which leads to (6.44a).

Remark 6.1. There is a different proof of Lemma 6.4, without using Lemma 6.2. For
the case (typ, ℓ) = (+, 1), (ρρρ, v1) is the smallest pos-type quadratic eigenpair of QQQE(λ) =
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λ2A+ λB + C − ω1I. By direct calculations16,

ω1 = ω1 −
uH1QQQ(ρρρ)u1

uH1 u1
+ ς0(u1)(ρρρ− λ+1 ) +

uH1 Au1

uH1 u1
(ρρρ− λ+1 )

2, (6.45a)

ω1 =
vH1QQQ(λ+1 )v1

vH1 v1
+ ςω1;0(v1)(ρρρ− λ+1 )−

vH1 Av1

vH1 v1
(ρρρ− λ+1 )

2. (6.45b)

Along with QQQ(ρρρ)− ω1I ≼ 0, QQQ(λ+1 ) ≼ 0, they yield

ω1

ςω1;0(v1)
≤ ρρρ− λ+1 ≤ ω1

ς0(u1)

and then
ς0(u1)

ςω1;0(v1)
(ρρρ− λ+1 ) ≤

ω1

ςω1;0(v1)
≤ ρρρ− λ+1

which is (6.43a).

While Lemmas 6.5 and 6.6 are stated for any g ∈ Pm−1 with the specified conditions
satisfied, in their eventual application, it will be taken to be the one that minimizes εg.

Lemma 6.5. Given x ∈ Cn, assign ρρρ± = ρ±(x) and ρρρg;± = ρ±(g(QQQ(ρρρ+))x) for any
g ∈ Pm−1. Suppose λtyp1 ≤ ρρρtyp < λtyp2 if ℓ = 1 or λtypn−1 < ρρρtyp ≤ λtypn if ℓ = n, and let the
eigenvalues of QQQ(ρρρtyp) be ωj for 1 ≤ j ≤ n which can be arranged as

ω1 > 0 > ω2 ≥ · · · ≥ ωn if (typ, ℓ) ∈ {(+, 1), (−, n)}, or,

ω1 < 0 < ω2 ≤ · · · ≤ ωn if (typ, ℓ) ∈ {(+, n), (−, 1)}.

Denote by v1 the eigenvector of QQQ(ρρρtyp) associated with its eigenvalue ω1. Then for a
g ∈ Pm−1 such that g(ω1) ̸= 0 and

εg := max
i̸=1

|g(ωi)|
|g(ω1)|

< 1, (6.46)

we have

|ρρρg;typ−λtypℓ | ≤ |ρρρtyp−λtypℓ |− |ω1|
|ρρρtyp − ρρρg;typ′ | a(v1)

+
|ω1|

|ρρρtyp − ρρρg;typ′ | a(v1)
h(εg, ω1), (6.47)

16In fact,

uH
1 Au1(ρρρ− λ+

1 )
2 + ς(u1)(ρρρ− λ+

1 ) = uH
1 Au1

[
ρρρ2 − 2ρρρλ+

1 + (λ+
1 )

2]+ (2λ+
1 u

H
1 Au1 + uH

1 Bu1)(ρρρ− λ+
1 )

= ρρρ2uH
1 Au1 + ρρρuH

1 Bu1 − (λ+
1 )

2uH
1 Au1 − λ+

1 u
H
1 Bu1

= uH
1QQQ(ρρρ)u1 − uH

1QQQ(λ+
1 )u1

= uH
1QQQ(ρρρ)u1,

vH1 Av1(ρρρ− λ+
1 )

2 − ςω1(v1)(ρρρ− λ+
1 ) = vH1 Av1

[
ρρρ2 − 2ρρρλ+

1 + (λ+
1 )

2]− (2ρρρvH1 Av1 + vH1 Bv1)(ρρρ− λ+
1 )

= (λ+
1 )

2vH1 Av1 + λ+
1 v

H
1 Bv1 − ρρρ2vH1 Av1 − ρρρvH1 Bv1

= vH1QQQ(λ+
1 )v1 − vH1QQQ(ρρρ)v1

= vH1QQQ(λ+
1 )v1 − ω1v

H
1 v1.

They lead to the equations in (6.45) right away.
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where typ′ is the opposite type of typ, and

h(εg, ω1) = 1−
1− ε2g(

1 + εg|ω1|1/2τ1/2A

)2 , τA =
1

|ω2|
∥A∥2
a(v1)

. (6.48)

Proof. Consider the case (typ, ℓ) = (+, 1), and write ρρρ = ρρρ+. Without loss of generality,
we may assume ∥v1∥2 = 1. Let the eigenvalue decomposition of QQQ(ρρρ) be

QQQ(ρρρ) = V ΣV H, V = [v1, · · · , vn], Σ = diag(ω1, · · · , ωn),

where ω1 > 0 > ω2 ≥ · · · ≥ ωn and V HV = In. Set

x̂ = V Hx =


ξ1
ξ2
...
ξn

 , x̂2 = x̂− ξ1e1 =


0
ξ2
...
ξn

 .
Then

0 = xHQQQ(ρρρ)x = x̂HΣx̂ = ω1|ξ1|2 +
∑
i̸=1

ωi|ξi|2. (6.49)

Note that for any vector z, zHQQQ(λ)z = zHAz [λ− ρ+(z)][λ− ρ−(z)]. Substitute λ = ρρρ and
z = g(QQQ(ρρρ))x to get

ρρρg − λ+1 = ρρρ− λ+1 − 1

ρρρ− ρρρg;−
· x

Hg(QQQ(ρρρ))HQQQ(ρρρ)g(QQQ(ρρρ))x

xHg(QQQ(ρρρ))HAg(QQQ(ρρρ))x

= ρρρ− λ+1 − 1

ρρρ− ρρρg;−
· x̂

Hg(Σ)HΣg(Σ)x̂

x̂Hg(Σ)HÂg(Σ)x̂
, (6.50)

where Â = V HAV and ρρρg = ρρρg;+. We need to estimate the right-hand side of (6.50). We
have

x̂Hg(Σ)HΣg(Σ)x̂ = ω1|g(ω1)|2|ξ1|2 +
∑
i ̸=1

ωi|g(ωi)|2|ξi|2

≥ ω1|g(ω1)|2|ξ1|2 + ε2g|g(ω1)|2
∑
i̸=1

ωi|ξi|2

= ω1|g(ω1)|2|ξ1|2 − ε2g|g(ω1)|2ω1|ξ1|2 (by (6.49))

= (1− ε2g)ω1|g(ω1)|2|ξ1|2, (6.51)

x̂Hg(Σ)HÂg(Σ)x̂ = ∥g(Σ)x̂∥2
Â

= ∥g(ω1)ξ1e1 + g(Σ)x̂2∥2Â
≤
[
|g(ω1)| |ξ1| ∥e1∥Â + ∥g(Σ)x̂2∥Â

]2
≤
[
|g(ω1)| |ξ1| ∥e1∥Â + εg|g(ω1)|∥x̂2∥Â

]2
≤

[
|g(ω1)| |ξ1| ∥e1∥Â + εg|g(ω1)|

(
∥A∥2

ω1

−ω2
|ξ1|2

)1/2
]2

(6.52)
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= |g(ω1)|2|ξ1|2vH1 Av1

[
1 + εg

(
ω1

−ω2

∥A∥2
vH1 Av1

)1/2
]2
, (6.53)

where the inequality sign at (6.52) holds because

∥x̂2∥2Â ≤ ∥Â∥2∥x̂2∥22 = ∥V HAV ∥2
∑
i̸=1

|ξi|2 ≤ ∥A∥2

∑
i̸=1 ωi|ξi|2

ω2
= ∥A∥2

ω1

−ω2
|ξ1|2

by (6.49). Thus, from (6.50), (6.51), and (6.53),

ρρρg − λ+1 ≤ ρρρ− λ+1 − ω1

(ρρρ− ρρρg;−)vH1 Av1

1− ε2g[
1 + εg

(
ω1
−ω2

∥A∥2
vH1 Av1

)1/2]2 (6.54)

which gives (6.47) for the case (typ, ℓ) = (+, 1).

Lemma 6.6. Under the conditions of Lemma 6.5, we have

|ρρρg;typ − λtypℓ | ≤ |ω1|
ς0(v1)

ε2g +
1− ε2g
ς0(v1)

(
3τ

1/2
A + 2χ1

)
εg|ω1|3/2 +O(ω2

1), (6.55)

provided

εg|ω1|1/2max{τ1/2A , ζχ1} < 1, 4a(v1)|ω1| < ς0(v1)
2, (6.56)

where τA, τB, and τC are defined in (6.25), and

χ1 =
b0(v1)

2τ
1/2
B + 2a(v1)c0(v1)(τ

1/2
A + τ

1/2
C )

ς0(v1)2
, (6.57)

ζ = 4 + 6εgω
1/2
1 τ

1/2
B + 4ε2gω1τB + ε3gω

3/2
1 τ

3/2
B , (6.58)

and the shift λ0 ≥ λ+n in defining b0( · ) and c0( · ) in (6.21). Alternatively,

|ρρρg;typ −λtypℓ | ≤ ε2g|ρρρtyp −λtypℓ |+(1− ε2g)(3τ
1/2
A +2χ1)εg|ρρρtyp −λtypℓ |3/2 +O(|ρρρtyp −λtypℓ |2),

(6.59)
provided

|ρρρtyp − λtypℓ | < max

{
ς0(v1)

4a(v1)
,

1

ς0(v1)ε2gmax{τA, ζ2χ2
1}

}
. (6.60)

Proof. Consider the case (typ, ℓ) = (+, 1), and write ρρρ = ρρρ+. Without loss of generality,
we may assume ∥v1∥2 = 1. Write xg = g(QQQ(ρρρ))x, and

tM = ω
1/2
1 τ

1/2
M for M = A,B,C,

aaa = a(v1), bbb = b(v1), ccc = c(v1),

bbb0 = b0(v1), ccc0 = c0(v1).

By Lemma 6.5, ρρρg ≤ ρρρ (see (6.54)) and

ρρρg − λ+1 ≤ δ0 + δ1 + δ2 + δ3, (6.61)
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where

0 ≤ δ0 = ρρρ− λ+1 − ω1

ςω1;0(v1)
= O(|ρρρ− λ+1 |

2) = O(ω2
1), (6.62)

δ1 =
ω1

ςω1;0(v1)
− ω1

(ρρρg − ρρρg;−)aaa
,

δ2 =
ω1

(ρρρg − ρρρg;−)aaa
− ω1

(ρρρ− ρρρg;−)aaa
,

δ3 =
ω1

(ρρρ− ρρρg;−)aaa
h(εg, ω1).

The rest of the proof is mainly to estimate δ1, δ2, and δ3.
For δ2, we have

0 ≤ δ2 =
ω1

aaa

ρρρ− ρρρg
(ρρρg − ρρρg;−)(ρρρ− ρρρg;−)

≤ ω1

aaa

ρρρ− λ+1
(ρρρg − ρρρg;−)(ρρρ− ρρρg;−)

= O
(
ω2
1

)
, (6.63)

where we have used (6.44a).
Consider δ1. If 4aaaω1 < bbb2 − 4aaaccc which holds for sufficiently tiny ω1, then

1

ςω1(v1)
=

1√
bbb2 − 4aaa(ccc− ω1)

=
1√

bbb2 − 4aaaccc

[
1− 2aaa

bbb2 − 4aaaccc
ω1 +O(ω2

1)

]
. (6.64)

By item 2 of Lemma 4.2, any shift λ0 ≥ λ+n makes QQQλ0(λ) overdamped, i.e., Bλ0 ≻ 0 and
Cλ0 ≽ 0. It can be verified that

bbb20 − 4aaaccc0 = bbb2 − 4aaaccc = [ς(v1)]
2.

We get, similarly to (6.53),

aaa |g(ω1)|2|ξ1|2(1− 2εgtA) ≤ xHg Axg ≤ aaa |g(ω1)|2|ξ1|2(1 + εgtA)
2,

bbb0|g(ω1)|2|ξ1|2(1− 2εgtB) ≤ xHg Bλ0xg≤ bbb0|g(ω1)|2|ξ1|2(1 + εgtB)
2,

ccc0|g(ω1)|2|ξ1|2(1− 2εgtC) ≤ xHg Cλ0xg≤ ccc0|g(ω1)|2|ξ1|2(1 + εgtC)
2.

Note that ρρρg − λ0 (recalling ρρρg is the shorthand for ρρρg;+) and ρρρg;− − λ0 are two distinct
roots of xHg Axgλ

2 + xHg Bλ0xgλ+ xHg Cλ0xg = 0 in λ. So

1

(ρρρg − ρρρg;−)aaa
=

xHg Axg

aaa
√
(xHg Bλ0xg)

2 − 4(xHg Axg)(x
H
g Cλ0xg)

≥ 1− 2εgtA√
bbb20(1 + εgtB)4 − 4aaaccc0(1− 2εgtA)(1− 2εgtC)

=
1− 2εgtA√

bbb20 − 4aaaccc0 + 4εg(bbb20tB + 2aaaccc0tA + 2aaaccc0tC) + 2ε2g(3bbb
2
0t

2
B − 8aaaccc0tAtC) + 4ε3gbbb

2
0t

3
B + ε4gbbb

2
0t

4
B

=
1− 2εgtA√

(bbb20 − 4aaaccc0)(1 + 4εgχ1ω
1/2
1 + 2ε2gχ2ω1) + 4ε3gbbb

2
0t

3
B + ε4gbbb

2
0t

4
B

=
1√

bbb20 − 4aaaccc0
(1− 2εgω

1/2
1 τ

1/2
A )

[
1− 2εgχ1ω

1/2
1 + ε2g(6χ

2
1 − χ2)ω1 + · · ·

]
(6.65)
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=
1√

bbb2 − 4aaaccc

[
1− 2εg(τ

1/2
A + χ1)ω

1/2
1 + ε2g(6χ

2
1 − χ2 + 4τ

1/2
A χ1)ω1 +O(ω

3/2
1 )

]
, (6.66)

where

χ1 =
bbb20τ

1/2
B + 2aaaccc0(τ

1/2
A + τ

1/2
C )

bbb2 − 4aaaccc
, χ2 =

3bbb20τB − 8aaaccc0τ
1/2
A τ

1/2
C

bbb2 − 4aaaccc
.

In obtaining (6.65), we need17 ζεgχ1ω
1/2
1 < 1, where ζ = 4+ 6εgtB + 4ε2gt

2
B + ε3gt

3
B. Using

(6.66), we have for δ1

δ1 =
ω1

ςω1;0(v1)
− ω1

(ρρρg − ρρρg;−)aaa

=
ω1√

bbb2 − 4aaaccc

[
1− 2aaa

bbb2 − 4aaaccc
ω1 +O(ω2

1)

]
− ω1√

bbb2 − 4aaaccc

[
1− 2εg(τ

1/2
A + χ1)ω

1/2
1 + ε2g(6χ

2
1 − χ2 + 4τ

1/2
A χ1)ω1 +O(ω

3/2
1 )

]
=

2εg(τ
1/2
A + χ1)ω

3/2
1√

bbb2 − 4aaaccc
+O(ω2

1). (6.67)

Now we turn to δ3. If εgtA < 1, then

h(εg, ω1) = 1− (1− ε2g) (1 + εgtA)
−2

= 1− (1− ε2g)(1− εgtA + 2ε2gt
2
A − 3ε3gt

3
A + · · · )

= ε2g + (1− ε2g)(εgt− 2ε2gt
2
A + · · · )

= ε2g + εg(1− ε2g)tA +O
(
t2A
)

= ε2g + εg(1− ε2g)ω
1/2
1 τ

1/2
A +O (ω1) ,

h(εg, ω1) = 1− (1− ε2g) (1 + tAεg)
−2

≥ 1− (1− ε2g)

= ε2g ≥ 0.

Therefore

δ3 =
ω1

(ρρρ− ρρρg;−)a
h(εg, ω1)

=
ω1ε

2
g + εg(1− ε2g)ω

3/2
1 τ

1/2
A

(ρρρ− ρρρg;−)a
+O

(
ω2
1

)
. (6.68)

17For the expansion in (6.65), it is needed that

4εgχ1ω
1/2
1 + 2ε2gχ2ω1 +

4ε3gbbb
2
0t

3
B

bbb2 − 4aaaccc
+

ε4gbbb
2
0t

4
B

bbb2 − 4aaaccc
< 1.

However,

2ε2gχ2ω1 +
4ε3gbbb

2
0t

3
B

bbb2−4aaaccc
+

ε4gbbb
2
0t

4
B

bbb2−4aaaccc

4εgχ1ω
1/2
1

≤
2ε2g3bbb

2
0t

2
B + 4ε3gbbb

2
0t

3
B + ε4gbbb

2
0t

4
B

4εgbbb20tB
=
εgtB
4

(6 + 4εgtB + ε2gt
2
B).
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We have finished estimating δi for i = 0, 1, 2, 3. Now, combine (6.61), (6.62), (6.63),
(6.67), and (6.68) to get

ρρρg − λ+1 ≤
2εg(τ

1/2
A + χ1)ω

3/2
1√

bbb2 − 4aaaccc
+
ω1ε

2
g + εg(1− ε2g)ω

3/2
1 τ

1/2
A

(ρρρ− ρρρg;−)aaa
+O(ω2

1)

=
ε2g

(ρρρ− ρρρg;−)aaa
ω1 +

(
2(τ

1/2
A + χ1)√
bbb2 − 4aaaccc

+
(1− ε2g)τ

1/2
A

(ρρρ− ρρρg;−)aaa

)
εgω

3/2
1 +O(ω2

1),

which, along with

1

(ρρρ− ρρρg;−)aaa
=

1

(ρρρg − ρρρg;−)aaa
− δ2
ω1

=
1√

bbb2 − 4aaaccc

[
1− 2εg(τ

1/2
A + χ1)ω

1/2
1

]
+O(ω1),

yield (6.55). Use (6.64) to see

1

ς0(v1)
=

1

ςω1;0(v1)

[
1 +

2aaa

bbb2 − 4aaaccc
ω1 +O(ω2

1)

]
substituting which and (6.44a) into (6.55) to get (6.59).

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Item 1 is a direct consequence of item 4 of Theorem 6.1.
Item 2 is a consequence of Lemma 6.6 upon letting g be the minimizer that gives the

minimal εm and using |ρρρi+1 − λtypℓ | ≤ |ρρρg − λtypℓ |.
For item 3, again let g be the minimizer that gives the minimal εm. As i → ∞ in

item 2, we have ω1 → 0, ω2 → γ, and v1 → utypℓ in direction, and thus

lim
i→∞

η(v1) = lim
i→∞

3τ
1/2
A + 2

(b0(v1))
2τ

1/2
Bλ0

+ 2a(v1)c0(v1)(τ
1/2
A + τ

1/2
Cλ0

)

ς0(v1)2
= η

as given by (6.29). Now let

ĝ(t) = Tm−1

(
2t− (ωn + ω2)

ωn − ω2

)/
Tm−1

(
−1 + κ̂

1− κ̂

)
, κ̂ =

ω2 − ω1

ωn − ω1
,

where Tm−1(t) is the (m−1)st Chebyshev polynomial of the first kind. Then [34, section 2]

εm ≤ εĝ ≤ max
ω2≤t≤ωn

|ĝ(t)| = 2

(1 +
√
κ̂

1−
√
κ̂

)m−1

+

(
1 +

√
κ̂

1−
√
κ̂

)−(m−1)
−1

which goes to ε as i→ ∞ because κ̂→ κ.
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7 Preconditioned steepest descent/ascent method

7.1 Preconditioning

We will explain the idea of preconditioning for computing (λ+1 , u
+
1 ) only, via two different

points of view. The same argument can be made for other extreme pos- and neg-quadratic
eigenpairs.

It is well-known that when the contours of the objective function near its optimum
are extremely elongated, at each step of the conventional steepest descent/ascent method,
following the search direction which is the opposite of the gradient gets closer to the
optimum on the line for a very short while and then starts to get away because the
direction doesn’t point “towards the optimum”, resulting in a long zigzag path of a large
number of steps. The ideal search direction p is therefore the one such that with its starting
point at xxx, p points to the optimum, i.e., the optimum is on the line {xxx + tp : t ∈ C}.
Specifically, expand xxx as a linear combination of u+j

xxx =

n∑
j=1

αju
+
j =: α1u

+
1 + vvv, vvv =

n∑
j=2

αju
+
j . (7.1)

Then the ideal search direction is

p = αu+1 + βvvv

for some scalar α and β ̸= 0 such that α1β − α ̸= 0 (otherwise p = βxxx). Of course, this is
impractical because we don’t know u+1 and vvv. But we can construct one that is close to
it. One such p is

p = [QQQ(σ)]−1 r+(xxx) = [QQQ(σ)]−1QQQ(ρρρ+)xxx,

where ρρρ+ = ρ+(xxx) and
18 σ is some shift near λ+1 but not equal to ρρρ+. Let us analyze this

p. By (2.17a), we have

[QQQ(σ)]−1QQQ(ρρρ+) = U+(σI−Λ+)
−1(UH

−AU+)
−1(σI−Λ−)

−1(ρρρ+I−Λ−)U
H
−AU+(ρρρ+I−Λ+)U

−1
+ .

Suppose now that both σ and ρρρ+ are near λ+1 . Then

(σI − Λ−)
−1(ρρρ+I − Λ−) = I + (ρρρ+ − σ)(σI − Λ−)

−1 ≈ I.

Therefore [QQQ(σ)]−1QQQ(ρρρ+) ≈ U+(σI − Λ+)
−1(ρρρ+I − Λ+)U

−1
+ , and thus

p = [QQQ(σ)]−1QQQ(ρρρ+)xxx ≈
n∑
j=1

µjαju
+
j , µj :=

λ+j − ρρρ+

λ+j − σ
. (7.2)

Now if λ+1 ≤ ρρρ+ < λ+2 and if the gap λ+2 − λ+1 is reasonably modest, then

µj ≈ 1 for j > 1

to give a p ≈ αu+1 + vvv, resulting in fast convergence. This rough but intuitive analysis
suggests that K = [QQQ(σ)]−1 with a suitably chosen shift σ can be used to serve as a

18We reasonably assume also σ ̸= λ+
j for all j, too.
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good preconditioner to improve the steepest descent/ascent method – Algorithm 6.1 by
simply modifying Yi = [xxxi, rrri] at Line 6 there to Yi = [xxxi,Krrri]. We caution the reader that
implementingKrrri is amount to solving a linear system. This is usually done approximately
by, e.g., some iterative methods such as the linear conjugate gradient method, MINRES
[11, 17, 19].

The second view point is similar to the one proposed by Golub and Ye [18] for the
generalized linear eigenvalue problem. Theorem 6.2 reveals that the rates of convergence
for Algorithms 6.1 and 6.2 depend on the distribution of the eigenvalues ωj of QQQ(ρρρi), not
the quadratic eigenvalues of of QQQ(λ). In particular, if all ω2 = · · · = ωn, then ϵm = 0 for
m ≥ 2 and thus

ρρρi+1 − λ+1 = O(|ρρρi − λ+1 |
2),

suggesting quadratic convergence. Such an extreme case, though highly welcome, is un-
likely to happen in practice, but it gives us an idea that if somehow we could transform
an eigenvalue problem towards such an extreme case, the transformed problem would be
easier to solve. Specifically we should seek equivalent transformations that change the
eigenvalues of QQQ(ρρρi) as much as possible to,

one isolated eigenvalue ω1, and the rest ωj (2 ≤ j ≤ n) tightly clustered, (7.3)

but leave the quadratic eigenvalues of QQQ(λ) unchanged.
We would like to equivalently transform the QEP for QQQ(λ) to for L−1QQQ(λ)L−H by

some nonsingular L (whose inverse or any linear system with L is easy to solve) so that
the eigenvalues of L−1QQQ(ρρρi)L

−H distribute more or less like (7.3). Then apply one step
of Algorithm 6.1 or 6.2 to the pencil L−1QQQ(λ)L−H to find the next approximation ρρρi+1.
The process repeats, i.e., find a new L to transform the problem and apply one step of
Algorithm 6.1 or 6.2 to the transformed problem.

Such an L may be constructed using the LDLH decomposition of QQQ(ρρρi) [17, p.139] if
the decomposition exists: QQQ(ρρρi) = LDLH, where L is lower triangular and D = diag(±1).
Then L−1QQQ(ρρρi)L

−H = D has the ideal eigenvalue distribution that gives ϵm = 0 for any
m ≥ 2. Unfortunately, this simple solution is impractical in practice for the following
reasons:

1. The decomposition may not exist at all. In theory, the decomposition exists if all
the leading principle submatrices of QQQ(ρρρi) are nonsingular.

2. If the decomposition does exist, it may not be numerically stable to compute, espe-
cially when ρρρi comes closer and closer to λ+1 .

3. The sparsity in QQQ(ρρρi) is most likely destroyed, leaving L significantly denser than
QQQ(ρρρi). This makes all ensuing computations much more expensive.

A more practical solution is, however, through an incomplete LDLH factorization (see [51,
Chapter 10]), to get

QQQ(ρρρi) ≈ LDLH,

where “≈” includes not only the usual “approximately equal”, but also the case when
QQQ(ρρρi) − LDLH is approximately a low rank matrix, and D = diag(±1). Such an L
changes from one step of the algorithm to another. In practice, often we may use one
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fixed preconditioner for all or a number of consecutive iterative steps. Using a constant
preconditioner is certainly not optimal: it likely doesn’t give the best rate of convergence
per step and thus increases the number of total iterative steps but it may reduce overall
cost because it saves work in preconditioner constructions and thus reduces cost per step.
The basic idea of using a step-independent preconditioner is to find a σ that is close to
λ+1 , and perform an incomplete LDLH decomposition:

QQQ(σ) ≈ LDLH

and transform QQQ(λ) accordingly before applying Algorithm 6.1 or 6.2. Now the rate of
convergence is determined by the eigenvalues of

L−1QQQ(ρρρi)L
−H = L−1QQQ(σ)L−H + (ρρρi − σ)L−1QQQ′(σ)L−H +O

(
|ρρρi − σ|2

)
which would have a better spectral distribution so long as the last two terms is small
relative to L−1QQQ(ρρρi)L

−H. When λ−n < σ < λ+1 , −QQQ(σ) ≻ 0 and the incomplete LDLH

factorization becomes incomplete Cholesky factorization.

7.2 Preconditioned steepest descent/ascent method

We have insisted so far about applying Algorithm 6.1 or 6.2 straightforwardly to the
transformed problem. There is another way, perhaps, better: only symbolically applying
Algorithm 6.1 or 6.2 to the transformed problem as a derivation tool for a preconditioned
method that always projects the original pencil QQQ(λ) directly every step. The only differ-
ence is now the projecting subspaces are preconditioned. Again we will explain it for the
case of computing the first pos-type quadratic eigenpair (λ+1 , u

+
1 ).

Suppose QQQ(λ) is transformed to Q̂QQ(λ) := L−1QQQ(λ)L−H. Consider a typical step of

Algorithm 6.2 applied to Q̂QQ(λ). For the purpose of distinguishing notational symbols, we

will put hats on all those for Q̂QQ(λ). The typical step of Algorithm 6.2 on Q̂QQ is

compute the smallest pos-type quadratic eigenvalue µ and corresponding
quadratic eigenvector v̂ of ẐHQ̂QQ(λ)Ẑ, where Ẑ ∈ Cn×m is a basis matrix

of Krylov subspace Km(Q̂QQ(ρ̂ρρ), x̂xx).

(7.4)

Notice
[
Q̂QQ(ρ̂ρρ)

]j
x̂xx = LH

[
(LLH)−1QQQ(ρ̂ρρ)

]j
(L−Hx̂xx) to see

L−H ·Km(Q̂QQ(ρ̂ρρ), x̂xx) = Km(KQQQ(ρ̂ρρ),xxx),

where xxx = L−Hx̂xx and K = (LLH)−1. So Z = L−HẐ is a basis matrix of Krylov subspace
Km(KQQQ(ρ̂ρρ),xxx). Since also

ẐHQ̂QQ(λ)Ẑ = (L−HẐ)HQQQ(λ)(L−HẐ),

ρ̂ρρ = ρ̂+(x̂xx) = ρ+(xxx) = ρρρ,

the typical step (7.4) can be reformulated equivalently to

compute the smallest pos-type quadratic eigenvalue µ and corresponding
quadratic eigenvector v of ZHQQQ(λ)Z, where Z ∈ Cn×m is a basis matrix
of Krylov subspace Km(KQQQ(ρρρ),xxx), where K = (LLH)−1.

(7.5)
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Algorithm 7.1 Preconditioned extended steepest descent/ascent method

Given an initial approximation xxx0 to utypℓ , and a relative tolerance rtol, and the search

space dimension m, the algorithm computes an approximate pair to (λtypℓ , utypℓ ) with the
prescribed rtol.

1: xxx0 = xxx0/∥xxx0∥, ρρρ0 = ρtyp(xxx0), rrr0 = rtyp(xxx0);
2: for i = 0, 1, . . . do
3: if ∥rrri∥/(|ρρρi|2∥Axxxi∥+ |ρρρi| ∥Bxxxi∥+ ∥Cxxxi∥) ≤ rtol then
4: BREAK;
5: else
6: construct a preconditioner Ki;
7: compute a basis matrix Yi for the Krylov subspace Km(KiQQQ(ρρρi),xxxi);
8: solve HQEP for Y H

i QQQ(λ)Yi to get its quadratic eigenvalues µ±j as in (6.11) and

quadratic eigenvectors y±j ;

9: select the next approximate quadratic eigenpair (µ, y) = (µtypj , Y ytypj ) according
to the table in (6.12);

10: xxxi+1 = y/∥y∥, ρρρi+1 = µ, rrri+1 = rtyp(xxxi+1);
11: end if
12: end for
13: return (ρρρi,xxxi) as an approximate quadratic eigenpair to (λtypℓ , utypℓ ).

We are now ready to state a version of the preconditioned extended steepest descent/ascent
method . To make it be inclusive, in Algorithm 7.1 we use Ki to denote the preconditioner
at the ith iterative step. Once again, they may all be the same or vary from one iterative
step to another. Although the derivation of this algorithm was for the preconditioners
obtained from the second view point above, its final form includes the preconditioners
from the first view point.

7.3 Convergence analysis

If Ki ≻ 0, the ith iterative step of Algorithm 7.1 is just one step of the extended steepest

descent/ascent method applied to K
1/2
i QQQ(λ)K

1/2
i . Therefore Theorem 6.2 implies the

following theorem for Algorithm 7.1.

Theorem 7.1. Suppose λtyp1 ≤ ρρρ0 < λtyp2 if ℓ = 1 or λtypn−1 < ρρρ0 ≤ λtypn if ℓ = n, and let
the sequences {ρρρi}, {rrri}, {xxxi} be produced by Algorithm 7.1. Suppose Ki ≻ 0.

1. As i → ∞, ρρρi monotonically converges to ρ̂ = λtypℓ , and xxxi converges to utypℓ in

direction, i.e., θ(xxxi, u
typ
ℓ ) → 0.

2. The eigenvalues19 ωj of KiQQQ(ρρρi) can be ordered as

ω1 > 0 > ω2 ≥ · · · ≥ ωn if (typ, ℓ) ∈ {(+, 1), (−, n)}, or, (7.6a)

ω1 < 0 < ω2 ≤ · · · ≤ ωn if (typ, ℓ) ∈ {(+, n), (−, 1)}. (7.6b)

19Their dependency upon i is suppressed for clarity.
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If ρρρi is sufficiently close to λtypℓ , then

|ρρρi+1 − λtypℓ | ≤ ε2m|ρρρi − λtypℓ |+O
(
εm|ρρρi − λtypℓ |3/2 + |ρρρi − λtypℓ |2

)
, (7.7)

where εm is defined as in (6.24).

3. Denote20 by γ and Γ the smallest and largest positive eigenvalue of{
−KiQQQ(λtypℓ ) for (typ, ℓ) ∈ {(+, 1), (−, n)},
KiQQQ(λtypℓ ) for (typ, ℓ) ∈ {(+, n), (−, 1)}.

If ρρρi is sufficiently close to λtypℓ , then

|ρρρi+1 − λtypℓ | ≤ ε2|ρρρi − λtypℓ |+O
(
ε|ρρρi − λtypℓ |3/2 + |ρρρi − λtypℓ |2

)
, (7.8)

where ε is defined as in (6.28).

There is a convergence rate estimate, essentially due to Samokish [52, 1958], for the
preconditioned steepest descent/ascent method in the case of the standard Hermitian
eigenvalue problem. The reader is referred to [29, 46] for detail. Theorem 7.2 below is an
extension of Samokish’s result for our case.

Theorem 7.2. Suppose K ≻ 0. Let ℓ ∈ {1, n} and typ, typ′ ∈ {+,−} such that typ and
typ′ are opposite, and denote by γ and Γ the smallest and largest positive eigenvalue of{

−KQQQ(λtypℓ ) for (typ, ℓ) ∈ {(+, 1), (−, n)},
KQQQ(λtypℓ ) for (typ, ℓ) ∈ {(+, n), (−, 1)},

and

τ =
2

γ + Γ
, κ =

Γ

γ
, ε =

κ− 1

κ+ 1
.

Let argopt be as given in (6.6), and

topt = argopt
t∈C

ρtyp(x+ tKrtyp(x)), y = x+ toptKrtyp(x),

z =

{
x+ τKr±(x) for (typ, ℓ) ∈ {(+, 1), (−, n)},
x− τKr±(x) for (typ, ℓ) ∈ {(+, n), (−, 1)}.

We have

|ρtyp(y)− λtypℓ | ≤ |ρtyp(z)− λtypℓ |

≤ 1

|λtypℓ − ρtyp′(z)|

ε
√
|λtypℓ − ρtyp′(x)|+ τ

√
Γ δ1

1− τ
(√

Γδ2 + δ23

)
2

|ρtyp(x)− λtypℓ |,

(7.9)

20It is worth emphasizing that KiQQQ(λtyp
ℓ ) is singular and, by Theorem 2.1, K

1/2
i QQQ(λtyp

ℓ )K
1/2
i is negative

semidefinite if (typ, ℓ) ∈ {(+, 1), (−, n)} and positive semidefinite if (typ, ℓ) ∈ {(+, n), (−, 1)}.
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provided τ
(√

Γδ2 + δ23

)
< 1, where

δ1 =

√
|ρtyp(x)− λtypℓ | ∥K1/2{A[ρtyp(x) + λtypℓ ] +B}A−1/2∥2,

δ2 =

√
∥K1/2AK1/2∥2 |ρtyp(x)− λtypℓ | · |λtypℓ − ρtyp′(x)|,

δ3 =

√
∥A1/2K{A[ρtyp(x) + λtypℓ ] +B}A−1/2∥2 |ρtyp(x)− λtypℓ |.

Proof. We will prove the case: (typ, ℓ) = (+, 1) only. The other cases can be handled in
the same way.

Note z = x+ τKr+(x) = x+ τKQQQ(ρ+(x))x. We have λ+1 ≤ ρ+(y) ≤ ρ+(z) and thus
ρ+(y) − λ+1 ≤ ρ+(z) − λ+1 . So it remains to show that ρ+(z) − λ+1 is no bigger than the
right-hand side of (7.9).

Let M = −QQQ(λ+1 ) ≽ 0. For any vector w, we have

∥w∥2M = −wHQQQ(λ+1 )w

= [ρ+(w)− λ+1 ][λ
+
1 − ρ−(w)]∥w∥2A, (7.10)

∥[I + τKQQQ(λ+1 )]w∥M = ∥[I − τKM ]w∥M
≤ ε∥w∥M . (7.11)

Write

z = [I + τKQQQ(λ+1 )]x− τK[QQQ(λ+1 )−QQQ(ρ+(x))]x

= [I + τKQQQ(λ+1 )]x+ τ [ρ+(x)− λ+1 ]K[A(ρ+(x) + λ+1 ) +B]x.

Without loss of generality, we may assume ∥x∥A = 1. We have

∥z∥M =
√

[ρ+(z)− λ+1 ][λ
+
1 − ρ−(z)] ∥z∥A, by (7.10)

∥z∥M ≤ ∥[I + τKQQQ(λ+1 )]x∥M + τ [ρ+(x)− λ+1 ]∥K[A(ρ+(x) + λ+1 ) +B]x∥M
≤ ε∥x∥M + τ [ρ+(x)− λ+1 ]

√
Γ ∥[A(ρ+(x) + λ+1 ) +B]x∥K

≤ ε
√

[ρ+(x)− λ+1 ][λ
+
1 − ρ−(x)]

+ τ [ρ+(x)− λ+1 ]
√
Γ ∥K1/2[A(ρ+(x) + λ+1 ) +B]A−1/2∥2

=

[
ε
√
λ+1 − ρ−(x) + τ

√
Γ δ1

]√
ρ+(x)− λ+1 , (7.12)

∥z∥A ≥ ∥x∥A − τ∥Kr+(x)∥A
= 1− τ∥Kr+(x)∥A,

∥Kr+(x)∥A = ∥KQQQ(λ+1 )x−K[QQQ(λ+1 )−QQQ(ρ+(x))]x∥A
≤ ∥KQQQ(λ+1 )x∥A + [ρ+(x)− λ+1 ]∥K[A(ρ+(x) + λ+1 ) +B]x∥A

≤
√

∥K1/2AK1/2∥2Γ ∥x∥M
+ [ρ+(x)− λ+1 ]∥A

1/2K[A(ρ+(x) + λ+1 ) +B]A−1/2∥2∥x∥A
=

√
Γδ2 + δ23 . (7.13)
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Finally use

ρ+(z)− λ+1 =
∥z∥2M

[λ+1 − ρ−(z)]∥z∥2A
≤

∥z∥2M
[λ+1 − ρ−(z)] · [1− τ∥Kr+(x)∥A]2

and (7.12) and (7.13) to complete the proof.

Similarly, we have the following result for Algorithm 7.1.

Theorem 7.3. Suppose K ≻ 0. Let ℓ ∈ {1, n} and typ, typ′ ∈ {+,−} such that typ and
typ′ are opposite, and let γ and Γ be the ones in Theorem 7.2, and

ε = 2

[(√
κ+ 1√
κ− 1

)m−1

+

(√
κ+ 1√
κ− 1

)−(m−1)
]−1

, κ =
Γ

γ
.

Let argopt be as given in (6.6), and

gopt = argopt
g∈Pm−1,g(0)=1

ρtyp(g(KQQQ(ρtyp(x))x),

y = gopt(KQQQ(ρtyp(x))x,

z = ĝ(KQQQ(ρtyp(x))x,

where

ĝ(t) = Tm−1

(
2t− (Γ + γ)

Γ − γ

)/
Tm−1

(
−1 + κ

1− κ

)
= 1 + c1t+ · · ·+ cm−1t

m−1

since ĝ(0) = 1, and Tm−1(t) is the (m− 1)st Chebyshev polynomial of the first kind. We
have

|ρtyp(y)− λtypℓ | ≤ |ρtyp(z)− λtypℓ |

≤ 1

|λtypℓ − ρtyp′(ztyp′)|

ε
√

|λtypℓ − ρtyp′(x)|+ η
√

|ρtyp(x)− λtypℓ |

1− η|ρtyp(x)− λtypℓ |

2

× |ρtyp(x)− λtypℓ |, (7.14)

provided

η : =

m−1∑
i=1

|ci| · ∥K[Aρ+(x) + λ+1 ] +B∥2
i−1∑
j=0

∥KQQQ(λ+1 )∥
i−j−1
2 ∥KQQQ(ρ+(x))∥j

<
1

|ρtyp(x)− λtypℓ |
.

Proof. We will prove the case: (typ, ℓ) = (+, 1) only. The other cases can be handled in
the same way.

We have λ+1 ≤ ρ+(y) ≤ ρ+(z) and thus ρ+(y) − λ+1 ≤ ρ+(z) − λ+1 . So it suffices to
show that ρ+(z)− λ+1 is no bigger than the right-hand side of (7.14).
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Let M = −QQQ(λ+1 ) ≽ 0. For any vector w, we have

∥w∥2M = −wHQQQ(λ+1 )w

= [ρ+(w)− λ+1 ][λ
+
1 − ρ−(w)]∥w∥2A, (7.15)

∥[ĝ(−KQQQ(λ+1 ))w∥M ≤ max
γ≤t≤Γ

|ĝ(σ)| ∥w∥M = ε∥w∥M . (7.16)

Write

z = ĝ(−KQQQ(λ+1 ))x−
m−1∑
i=1

(−1)ici
{
[KQQQ(λ+1 )]

i − [KQQQ(ρ+(x))]
i
}
x.

Note that

[KQQQ(λ+1 )]
i − [KQQQ(ρ+(x))]

i =

i−1∑
j=0

{
[KQQQ(λ+1 )]

i−j [KQQQ(ρ+(x))]
j

− [KQQQ(λ+1 )]
i−j−1[KQQQ(ρ+(x))]

j+1
}

=

i−1∑
j=0

[KQQQ(λ+1 )]
i−j−1

[
KQQQ(λ+1 )−KQQQ(ρ+(x))

]
[KQQQ(ρ+(x))]

j .

Therefore

∥[KQQQ(λ+1 )]
i − [KQQQ(ρ+(x))]

i∥2 ≤ ξi∥KQQQ(λ+1 )−KQQQ(ρ+(x))∥2
≤ ξi(ρ+(x)− λ+1 )∥K[Aρ+(x) + λ+1 ] +B∥2,

where ξi =
∑i−1

j=0 ∥KQQQ(λ+1 )∥
i−j−1
2 ∥KQQQ(ρ+(x))∥j . Without loss of generality, we may

assume ∥x∥A = 1. We have

∥z∥M =
√

[ρ+(z)− λ+1 ][λ
+
1 − ρ−(z)] ∥z∥A, by (7.15)

∥z∥M ≤ ε∥x∥M + η[ρ+(x)− λ+1 ]

=

(
ε
√
λ+1 − ρ−(x) + η

√
ρ+(x)− λ+1

)√
ρ+(x)− λ+1 , (7.17)

∥z∥A ≥ ∥x∥A −
m−1∑
i=1

ci∥[KQQQ(λ+1 )]
i − [KQQQ(ρ+(x))]

i∥2∥x∥A

≥ 1− η(ρ+(x)− λ+1 ), (7.18)

where η =
∑m−1

i=1 |ci|ξi∥K[Aρ+(x) + λ+1 ] +B∥2. Finally use

ρ+(z)− λ+1 =
∥z∥2M

[λ+1 − ρ−(z)]∥z∥2A

and (7.17) and (7.18) to complete the proof.
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8 Block preconditioned steepest descent/ascent method

The convergence of any of the previous steepest descent/ascent methods can be very slow
if λ±1 ≈ λ±2 or λ±n−1 ≈ λ±n . This is reflected by ω1 ≈ ω2 in Theorem 6.2 and 7.1. Often
in practice, there are needs to compute the first few extreme quadratic eigenpairs, not
just the first one. For that purpose, block variations of the methods become particularly
attractive for at least the following reasons:

1. they can simultaneously compute the first k extreme quadratic eigenpairs (λ±j , u
±
j );

2. they run more efficiently on modern computer architecture because more computa-
tions can be organized into the matrix-matrix multiplication type;

3. they have better rates of convergence to the desired eigenpairs and save overall cost
by using a block size that is slightly bigger than the number of asked eigenpairs.

In summary, the benefits of using a block variation are similar to those of using the
simultaneous subspace iteration vs. the power method [55].

In what follows, we will explain a block steepest descent/ascent method for computing
the first few (λ+j , u

+
j ). The same reasoning applies to other extreme quadratic eigenpairs.

Any block variation starts with a given X0 ∈ Cn×nb with rank(X0) = nb, instead of
just one vector xxx0 ∈ Cn previously for the single-vector steepest descent type methods.
Here either the jth column of X0 is already an approximation to u+j or the subspace R(X0)

is a good approximation to the subspace spanned by u+j for 1 ≤ j ≤ nb or the canonical

angles from R([u+1 , . . . , u
+
k ]) to R(X0) are nontrivial, where k ≤ nb is the number of desired

eigenpairs. In the latter two cases, a preprocessing is needed to turn the case into the first
case:

1. solve the HQEP XH
0 QQQ(λ)X0 to get its pos-type quadratic eigenpairs (ρρρ+0;j , y

+
j );

2. reset X0 := X0[y
+
1 , . . . , y

+
nb
].

So we will assume henceforth the jth column of the given X0 is an approximation to u+j .
Now consider generalizing the steepest descent method to a block version. Its typical ith
iterative step may well look like the following. Suppose we have already computed

Xi = [xi;1, xi;2, . . . , xi;nb
] ∈ Cn×nb

whose jth column xi;j approximates u+j and

Ωi = diag(ρρρ+i;1, ρρρ
+
i;2, . . . , ρρρ

+
i;nb

)

whose jth diagonal entry ρρρ+i,j = ρ+(xi;j) approximates λ+j . Define the residual matrix

Ri = [r+(xi;1), r+(xi;2), . . . , r+(xi;nb
)] = AXiΩ

2
i +BXiΩi + CXi.

The next set of approximations are computed as follows:

1. compute a basis matrix Z of R([Xi, Ri]) by, e.g., MGS;
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2. solve the QEP ZHQQQ(λ)Z to get its pos-type quadratic eigenpairs (ρρρ+i+1;j , y
+
j ), and

let Ωi+1 = diag(ρρρ+i+1;1, ρρρ
+
i+1;2, . . . , ρρρ

+
i+1;nb

);

3. set Xi+1 = Z[y+1 , . . . , y
+
nb
].

In the same way as we explained before, this block steepest descent method can be
improved in two directions – extending the search space is one and incorporating precon-
ditioners is the other.

Note that r+(xi;j) =QQQ(ρρρ+i;j)xi;j and thus

R([Xi, Ri]) =

nb∑
j=1

R([xi;j ,QQQ(ρρρ+i;j)xi;j ])

=

nb∑
j=1

K2(QQQ(ρρρ+i;j), xi;j).

So it is natural to extend the search space, R([Xℓ, Rℓ]) through extending each Krylov
subspace K2(QQQ(ρρρ+i;j), xℓ;j) to a high order one, and of course different Krylov subspaces
can be extended to different orders. For simplicity, we will extend each to the mth order.
The new extended search subspace now is

nb∑
j=1

Km(QQQ(ρρρ+i;j), xi;j). (8.1)

Define the linear operator

Ri : X ∈ Cn×nb → Ri(X) = AXΩ2
i +BXΩi + CX ∈ Cn×nb .

Then the subspace in (8.1) can be compactly written as

Km(Ri, Xi) = span{Xi,Ri(Xi), . . . ,R
m−1
i (Xi)}, (8.2)

where Rj
i ( · ) is understood as successively applying the operator Ri j times, e.g., R2

i (X) =
Ri(Ri(X)).

As to incorporate suitable preconditioners, in light of our extensive discussions in
subsection 7.1, the search subspace should be modified to

nb∑
j=1

Km(Ki;jQQQ(ρρρ+i;j), xi;j), (8.3)

where Ki;j are the preconditioners, one for each approximate eigenpair (ρρρ+i;j , xi;j) for 1 ≤
j ≤ nb in the ith iterative step. As before, Ki;j can be constructed in one of the following
two ways:

• Ki;j is an approximate inverse of QQQ(ρ̃ρρ+i;j) for some ρ̃ρρ+i;j different from ρρρ+i;j , ideally

closer to λ+j than to any other quadratic eigenvalue of QQQ(λ). But this requirement

on ρ̃ρρ+i;j is impractical because the quadratic eigenvalue λ+j of QQQ(λ) is unknown. A

compromise would be to make ρ̃ρρ+i;j closer but not equal to ρρρ
+
i;j than to any other ρρρ+i;j .

72



Algorithm 8.1 Block preconditioned extended steepest descent/ascent method

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb, and an integer m ≥ 2,
the algorithm computes approximate quadratic eigenpairs to (λtypj , utypj ) for j ∈ J, where
J = {1 ≤ j ≤ nb} for computing the few smallest quadratic eigenpairs of the given type
or {n − nb + 1 ≤ j ≤ n} for computing the few largest quadratic eigenpairs of the given
type.

1: solve the HQEP XH
0 QQQ(λ)X0 to get its quadratic eigenpairs (ρρρtyp0;j , y

typ
j );

2: X0 = X0[y
typ
1 , . . . , ytypnb ], Ĵ = {1 ≤ j ≤ nb};

3: for i = 0, 1, . . . do
4: construct preconditioners Ki;j for j ∈ Ĵ;
5: compute a basis matrix Z of the subspace∑

j∈Ĵ

Km(Ki;jQQQ(ρρρtypi;j ), xi;j), (8.4)

and let nZ be its dimension and Ĵ = {1 ≤ j ≤ nb} for computing the few smallest
quadratic eigenpairs of the given type or {nZ −nb+1 ≤ j ≤ nZ} for computing the
few largest quadratic eigenpairs of the given type;

6: compute the nb quadratic eigenpairs of ZHQQQ(λ)Z: (ρρρtypi+1;j , y
typ
j ) for j ∈ Ĵ and let

Ωi+1 = diag(. . . , ρρρtypi+1;j , . . .) whose diagonal entries are those for j ∈ Ĵ;
7: Xi+1 = ZW , where W = [. . . , ytypj , . . .] whose columns are those for j ∈ Ĵ;
8: end for
9: return approximate quadratic eigenpairs to (λtypj , utypj ) for j ∈ J.

• Perform an incomplete LDLH factorization (see [51, Chapter 10])QQQ(ρ̃ρρ+i;j) ≈ Li;jDi;jL
H
i;j ,

where “≈” includes not only the usual “aproximately equal”, but also the case when
QQQ(ρ̃ρρ+i;j) − Li;jDi;jL

H
i;j is approximately a low rank matrix, and Di;j = diag(±1).

Finally set Ki:j = Li;jL
H
i;j .

Algorithm 8.1 is the general framework of a Block Preconditioned Extended Steepest
Descent method (BPeSD) which embeds four methods into one:

1. Block Steepest Descent method: m = 2 and all preconditioners Ki;j = I;

2. Block Preconditioned Steepest Descent method: m = 2 and nontrivial Ki;j ;

3. Block Extended Steepest Descent method: m > 2 and all preconditioners Ki;j = I;

4. Block Preconditioned Extended Steepest Descent method: m > 2 and nontrivial
Ki;j .

There are three important implementation issues to worry about in turning this general
framework into a piece of working code.
1. In (8.3), a different preconditioner is used for each and every approximate eigenpair
(ρρρ+i;j , xi;j) for 1 ≤ j ≤ nb. While, conceivably, doing so will speed up convergence for
each approximate eigenpair because each preconditioner can be constructed to make that
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approximate eigenpair converge faster, but the cost in constructing these preconditioners
may likely be too heavy to bear. A more practical approach would be to use one precondi-
tioner Ki for all Ki;j aiming at speeding up the convergence of (ρ+i;1, xi;1) (or the first few
approximate quadratic eigenpairs for tightly clustered quadratic eigenvalues). Once it (or
the first few in the case of a tightly cluster) is determined to be sufficiently accurate, the
converged eigenpairs are locked up and deflated and a new preconditioner is computed to
aim at the next non-converged eigenpairs, and the process continues.

2. Consider implementing Line 5, i.e., generating a basis matrix for the subspace (8.4).
In the most general case, Z can be gotten by packing the basis matrices of all

Km(Ki;jQQQ(ρρρ+i;j), xℓ;j) for 1 ≤ j ≤ nb

together. There could be two problems with this: 1) such Z could be ill-conditioned, i.e.,
the columns of Z may not be sufficiently numerically linearly independent, and 2) the
arithmetic operations in building a basis for each Km(Ki;jQQQ(ρρρ+i;j), xi;j) are mostly matrix-
vector multiplications, straying from one of the purposes: performing most arithmetic
operations through matrix-matrix multiplications in order to achieve high performance
on modern computers. To address these two problems, we may do a tradeoff by using
Ki;j ≡ Ki for all j. This may likely degrade the effectiveness of the preconditioner per step
in terms of rates of convergence for all approximate eigenpairs (ρρρ+i;j , xi;j) but may achieve
overall gain in using less time because then the code will run much faster in matrix-matrix
operations, not to mention the saving in constructing just one preconditioner Ki instead
of nb different preconditioners Ki;j . To simplify our discussion below, we will drop the
subscript i for readability. Since Ki;j ≡ K for all j, (8.4) is the same as

Km(KR, X) = span{X,KR(X), . . . , [KR]m−1(X)}, (8.5)

where [KR]j( · ) is understood as successively applying the operator KR j times, e.g.,
[KR]2(X) = KRℓ(KR(X)). A basis matrix

Z = [Z1, Z2, . . . , Zm]

can be computed by the following block Arnoldi-like process.

1: Z1T = X (MGS);
2: for i = 2 to m do
3: Y = K(AZi−1Ω

2 +BZi−1Ω + CZi−1);
4: for j = 1 to i− 1 do
5: T = ZH

j Y ; Y = Y − ZjT ;
6: end for
7: ZiT = Y (MGS);
8: end for

There is a possibility that at Line 7 Y is numerically not of full column rank. If it happens,
it poses no difficulty at all. In running MGS on Y ’s columns, anytime if a column is deemed
linearly dependent on previous columns, that column should be deleted, along with the
corresponding ρρρ+j from Ω to shrink its size by 1 as well. At the completion of MGS, Zi
will have fewer columns than Y and the size of Ω is shrunk accordingly. Finally, at the
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end, the columns of Z are orthonormal, i.e., ZHZ = I (of apt size) which may fail to
an unacceptably level due to roundoff; so some form of re-orthogonalization should be
incorporated.
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Algorithm 9.1 Preconditioned conjugate gradient method

Given an initial approximation xxx0 to utypℓ , a (positive definite) preconditioner K, and a

relative tolerance rtol, the algorithm computes an approximate pair to (λtypℓ , utypℓ ) with
the prescribed rtol.

1: xxx0 = xxx0/∥xxx0∥2, , ρρρ0 = ρtyp(xxx0), rrr0 = rtyp(xxx0), ppp0 = −Krrr0;
2: for i = 0, 1, . . . do
3: if ∥rrri∥2/(|ρρρi|2∥Axxxi∥+ |ρρρi| ∥Bxxxi∥+ ∥Cxxxi∥) ≤ rtol then
4: BREAK;
5: else
6: solve the HQEP for Y H

i QQQ(λ)Yi, where Yi = [xxxi, pppi] to get its quadratic eigenvalues
µ±j as in (6.8) and quadratic eigenvectors y±j ;

7: select the next approximate quadratic eigenpair (µ, Yiv) according to the table
(6.9);

8: compute αi = topt as in (9.2) and then y as in (6.7) with x = xxxi and p = pppi;
9: xxxi+1 = y/∥y∥2;

10: set ρρρi+1 = ρtyp(xxxi+1), rrri+1 = rtyp(xxxi+1), pppi+1 = −Krrri+1 + βipppi, where βi is
commonly given by either one of

either βi =
rrrHi+1Krrri+1

rrrHi Krrri
or βi =

rrrHi+1K(rrri+1 − rrri)

rrrHi Krrri
; (9.1)

11: end if
12: end for
13: return (ρρρi,xxxi) as an approximate eigenpair to (λtypℓ , utypℓ ).

9 Conjugate gradient method

Again because of the equations in (3.8), the nonlinear CG type method [45, 59] and
its variations are natural candidates for computing the first or last quadratic eigenpair
(λ±j , u

±
j ), and their block variations can also be devised to simultaneously compute the

first or last few quadratic eigenpairs (λ±j , u
±
j ). Since much of the machinery including

gradients and preconditioning has already been built up, what remain are more or less
simple adaptations of CG type methods [35] for the generalized Hermitian eigenvalue
problem to the current case.

9.1 Preconditioned conjugate gradient method

The single-vector CG type methods heavily rely on the line-search problem (6.5) – (6.7)
which was solved by projecting the original n×nHQEP forQQQ(λ) to a 2×2 HQEP Y HQQQ(λ)Y
without actually computing the optimal parameter topt and thus the next approximation
y as in (6.7) for the steepest descent/ascent method and its variations. The outcome of
it is that the computed next approximation is a (complex) scalar multiply of y in (6.7).
This is good enough for the steepest descent/ascent method but not for the CG method
for which y in (6.7) needs to be computed. We now show how this y can be recovered
from the approximation given in the table (6.9). Let (µ, Y v) is selected according to the
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Algorithm 9.2 Locally optimal block preconditioned extended conjugate gradient method

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb, and an integer m ≥
2, the algorithm computes approximate eigenpairs to (λtypj , utypj ) for j ∈ J, where J =
{1 ≤ j ≤ nb} for computing the few smallest quadratic eigenpairs of the given type or
{n−nb+1 ≤ j ≤ n} for computing the few largest quadratic eigenpairs of the given type.

1: solve the HQEP XH
0 QQQ(λ)X0 to get its quadratic eigenpairs (ρρρtyp0;j , y

typ
j );

2: X0 = X0[y
typ
1 , . . . , ytypnb ], X−1 = 0, Ĵ = {1 ≤ j ≤ nb};

3: for i = 0, 1, . . . do
4: construct preconditioners Ki;j for j ∈ Ĵ;
5: compute a basis matrix Z of the subspace∑

j∈Ĵ

Km(Ki;jQQQ(ρρρi;j), xi;j) + R(Xi−1), (9.3)

and let nZ be its dimension and Ĵ = {1 ≤ j ≤ nb} for computing the few smallest
quadratic eigenpairs of the given type or {nZ −nb+1 ≤ j ≤ nZ} for computing the
few largest quadratic eigenpairs of the given type;

6: compute the nb quadratic eigenpairs of ZHQQQ(λ)Z: (ρρρtypi+1;j , y
typ
j ) for j ∈ Ĵ and let

Ωi+1 = diag(. . . , ρρρtypi+1;j , . . .) whose diagonal entries are those for j ∈ Ĵ;
7: Xi+1 = ZW , where W = [. . . , ytypj , . . .] whose columns are those for j ∈ Ĵ;
8: end for
9: return approximate quadratic eigenpairs to (λtypj , utypj ) for j ∈ J.

table, and write v = [ν1, ν2]
T and ŷ = Y v = ν1x+ ν2p. Thus

topt = ν2/ν1 if ν1 ̸= 0, and ∞ otherwise. (9.2)

With this, set y as in (6.7).
Our discussions on selecting a good preconditioner in subsection 7.1 should be followed.

Algorithm 9.1 presents the framework for the single-vector preconditioned conjugate gra-
dient method for QQQ(λ).

9.2 Locally optimal block preconditioned extended conjugate gradient
method

When it comes to eigenvalue computations by CG type methods, CG’s locally optimal
variations [48, 60] combined with preconditioning and blocking are more preferable than
the usual single-vector CG method as in Algorithm 9.1 [3, 28, 35]. In Algorithm 9.2,
we present a framework of the so-called Locally Optimal Block Preconditioned Extended
Conjugate Gradient Method (LOBPeCG) whose different implementation choice gives rise
to a list of CG-type methods which we will elaborate.

The three important implementation issues we discussed for Algorithm 8.1 (Block
Preconditioned Extended Steepest Descent method) after its introduction essentially apply
here, except some changes are needed in the computation of Z at Line 5 here.
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First Xi−1 can be replaced by something else. Specifically, we modify Lines 2, 6, and
8 of Algorithm 9.2 to

2: X0 = X0W , and Y0 = 0, Ĵ = {1 ≤ j ≤ nb};
5: compute a basis matrix Z of the subspace∑

j∈Ĵ

Km(Ki;jQQQ(ρρρi;j), xi;j) + R(Yi), (9.4)

such that R(Z(:,1:nb)) = R(Xi). Let nZ be its dimension and Ĵ = {1 ≤ j ≤ nb} for
computing the few smallest quadratic eigenpairs of the given type or
{nZ − nb + 1 ≤ j ≤ nZ} for computing the few largest quadratic eigenpairs
of the given type;

7: Xi+1 = ZW , where W = [. . . , ytypj , . . .] whose columns are those for j ∈ Ĵ,
Yi+1 = Z(:,nb+1:(m+1)nb)W(nb+1:(m+1)nb,:);

Next we will compute a basis matrix for the subspace (9.3) or (9.4). For better performance
(by using more matrix-matrix multiplications), we will assume Ki;j ≡ Ki for all j for
simplification. Dropping the subscript i for readability, we see (9.4) is the same as

Km(KR, X) + R(Y ) = span{X,KR(X), . . . , [KR]m−1(X)}+ R(Y ). (9.5)

We will first compute a basis matrix [Z1, Z2, . . . , Zm] forKm(KR, X) by the Block Arnoldi-
like process outlined at the end of section 8. In particular, R(Z1) = R(X). Then orthog-
onalize Y against [Z1, Z2, . . . , Zm] to get Zm+1 satisfying ZH

m+1Zm+1 = I. Finally take
Z = [Z1, Z2, . . . , Zm+1].

So far, we have not mentioned any convergence properties of these CG type methods.
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10 Numerical examples

In this section, we will present a couple of examples to demonstrate the numerical behavior
of Algorithm 9.2 which often performs much better than the steepest descent/ascent type
methods. In presenting numerical results, we will use the normalized residuals

∥QQQ(µi)xi∥2
(∥A∥1µ2i + ∥B∥1|µi|+ ∥C∥1)∥xi∥2

to show the convergent progress for approximations (µi, xi) to a particular quadratic eigen-
pair vs. the iteration index, where using the matrix ℓ1 operator norms ∥A∥1, ∥B∥1, and
∥C∥1 is more for computational convenience than anything else as any other norm would
serve the same purpose just as well.

Example 10.1. This is the problem Wiresaw1 in the collection [5]. It is actually a
gyroscopic QEP arising in the vibration analysis of a wiresaw [68], but leads to an HQEP.
Here

A =
1

2
In, C =

(ν2 − 1)π2

2
diag(12, 22, . . . , n2),

B = ι (bij) with bij =

ν
4ij

i2 − j2
, if i+ j is odd,

0, otherwise,

where ι =
√
−1 is the imaginary unit, ν is a real nonnegative parameter corresponding

to the speed of the wire. For 0 < ν < 1, QQQ(0) = C is negative definite, and thus
QQQ(λ) = λ2A+ λB + C is hyperbolic by Theorem 2.1. Moreover

λ−i < 0 < λ+j for all i, j.

Therefore it is rather natural to use K = −C−1 as a preconditioner when it comes to
compute the few smallest λ+j or largest λ−i , or for testing purpose some approximations

to C−1 such as those corresponding to the linear conjugate gradient methods.
We ran Algorithm 9.2 with nb = 10, m = 2 and random X0 = randn(n, nb) on this

example for n = 1, 000 and ν = 0.8 without or with preconditioners

K ≈

{
[QQQ(±6.0 · 103)]−1, for largest λ+j or smallest λ−j ,

−[QQQ(0)]−1 = −C−1, for smallest λ+j or largest λ−j ,
(10.1)

implemented through the linear conjugate gradient method with stopping criteria of nor-
malized residuals for the involved linear systems being no bigger than 10−1 or reaching
the maximum number CG steps which is 10. We have already explained the use of −C−1

or its approximations as possible precondtioners. After running Algorithm 9.2 without
any preconditioner, we noticed that all λ±j lie in (−6.0 · 103, 6.0 · 103) which leads to the

use of [QQQ(±6.0 · 103)]−1 in (10.1).
Figure 10.1 plots the residual history for computing the largest or smallest few λ±i ,

where the left column is for without any preconditioner while the right column is for
with the preconditioners as given in (10.1). We notice without using any preconditioner
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Figure 10.1: Residual history for running Algorithm 9.2 on Example 10.1

80



0 5 10 15 20 25 30 35 40
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration i

no
rm

al
iz

e 
re

si
du

al

for λ
1
+ and λ

2
+

0 2 4 6 8 10 12 14
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration i

no
rm

al
iz

e 
re

si
du

al

for λ
1
+ and λ

2
+

Figure 10.2: Residual history for running Algorithm 9.2 on Example 10.2 for computing
λ+1 and λ+2

Algorithm 9.2 performed poorly for computing smallest λ+j or largest λ−j but reasonably

well for largest λ+j or smallest λ−j . The effectiveness of the preconditioners as in (10.1) is
rather evident by comparing the plots in the two columns.

Example 10.2. This is [20, Example 5], where A = In,

B = ξ


20 −10
−10 30 −10

. . .
. . .

. . .

−10 30 −10
−10 20

 , C =


15 −5
−5 15 −5

. . .
. . .

. . .

−5 15 −5
−5 15

 ,

and ξ is a parameter. We take n = 1000 and ξ = 1.1. This is a pathological example
in the sense that most quadratic eigenvalues are close to one another – share about 3
significant decimal digits with their neighbors, except λ+1 and λ+2 which has a gap from
the rest. When running Algorithm 9.2 with m = 2 and various different nb, we noticed the
algorithm really had hard time computing all extreme λ±j even with some preconditioner

K = ±[QQQ(µ)]−1 with µ ∈ (λ−n , λ
+
1 ) or µ > λ+n or µ > λ−1 purposely selected, except for λ+1

and λ+2 which are rather easy to compute actually. Figure 10.2 plots the residual history
for computing λ+1 and λ+2 , where the left plot is for without any preconditioner while the
right plot is for with a preconditioner K ≈ [QQQ(−8.0)]−1 implemented through the linear
conjugate gradient method with the same stopping criteria as in the previous example.

11 Concluding remarks

We have perform a systematic study of the hyperbolic quadratic eigenvalue problem
QQQ(λ) = λ2A + λB + C. Such a problem usually arises from dynamical systems with
heavy friction. Such a system appears, for example, in in an elevator or car braking sys-
tem. It shares many characteristics with the standard Hermitian eigenvalue problem in
the category of usual standard linear eigenvalue problems, and had attracted quite some
attention in the past. Most of the results were collected in [16, 43, 65].
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Our contributions in this paper lie in two fronts. Theoretically, we have established
Amir-Moéz/Wielandt-Lidskii type min-max principles for the sums of selected quadratic
eigenvalues and, as corollaries, trace min/max type principles, and also perturbation re-
sults in the spectral and Frobenius norm, as well as general unitarily invariant norms
on how the quadratic eigenvalues will change if A, B, C are perturbed. Numerically,
we have justified a naturally extended Rayleigh-Ritz type procedure, with the existing
and newly established min-max principles, why the procedure will produce the best ap-
proximations to quadratic eigenvalues/eigenvectors, proposed steepest descent/ascent and
CG type methods for computing extreme quadratic eigenpairs, and established conver-
gence results, including the rate of convergence for the steepest descent/ascent methods,
which shed light on preconditioning in what constitutes a good preconditioner and how
to construct one.

Block steepest descent/ascent type methods often perform much better in practice than
their single-vector counterparts, as they should be. But their exact rates of convergence
are hard to establish. Experience shows that their corresponding locally optimal CG type
methods perform even better, but then again we do not know the exact rates of convergence
locally optimal CG type methods, either. It is recommended that locally optimal CG type
methods should be preferred to their corresponding steepest descent/ascent type methods.

Despite many successes we have so far in this paper in extending, as many as we can,
the important results (both theoretically and numerically) for the standard Hermitian
eigenvalue problem, there are more to be done. We list a few here.

• We established perturbation bounds for quadratic eigenvalues, but didn’t do so for
quadratic eigenvectors/eigenspaces. The latter is worth investigating, too. We ex-
pect that minx ς0(x) will play a role.

• Higham, Mackey, and Tisseur [23] expanded hyperbolic quadratic matrix polynomi-
als to include the case when A is positive semidefinite. Conceivably, many results in
this paper may be extensible to quadratic definite matrix polynomials in the sense
of [23], but care must be taken to deal with infinite quadratic eigenvalues.

• Many results in this paper should be extensible to hyperbolic matrix polynomials of
degrees higher than 2 [43]. We are working on it and results will be detailed in a
separate paper.
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A Digression: positive semidefinite matrix pencil

Let AAA− λBBB be a matrix pencil of order n, i.e., AAA, BBB ∈ Cn×n.

Definition A.1 ([38]). AAA − λBBB is said Hermitian if both AAA, BBB are Hermitian,
positive (semi)definite if it is Hermitian and there exists λ0 ∈ R such that AAA − λ0BBB ≻ 0
(AAA− λ0BBB ≽ 0).

The concept of positive semidefinite pencil is closely related to that of the so-called
definite pencil in the past literature [54, 57, 58]. The latter only requires that some
linear combination (with possibly complex coefficients) is positive definite and thus is
necessarily a regular pencil, i.e., det(AAA − λBBB) ̸≡ 0. Definition A.1 uses more restrictive
linear combinations, and also a positive semidefinite pencil of this definition may possibly
be singular, i.e., det(AAA− λBBB) ≡ 0.

To include, possibly, the case in which AAA− λBBB is a singular pencil, we say µ ̸= ∞ is a
finite eigenvalue of AAA− λBBB if

rank(AAA− µBBB) < max
λ∈C

rank(AAA− λBBB), (A.1)

and x ∈ Cn is a corresponding eigenvector if 0 ̸= x ̸∈ N(AAA) ∩N(BBB) satisfies

AAAx = µBBBx, (A.2)

or equivalently, 0 ̸= x ∈ N(AAA − µBBB)\(N(AAA) ∩ N(BBB)), where N(·) is the null space of a
matrix.

In the rest of this subsection, AAA− λBBB is assumed to be a positive semidefinite pencil.
Let the inertia of BBB be (i−(BBB), i0(BBB), i+(BBB)), meaning that BBB has i−(BBB) negative, i0(BBB)
zero, and i+(BBB) positive eigenvalues, respectively, and set

n− := i−(BBB), n+ := i+(BBB), r := rank(BBB) = n+ + n−.

Given 0 ≤ k+ ≤ n+ and 0 ≤ k− ≤ n−, set

Jk =

[
Ik+

−Ik−

]
.

We proved the following theorem in [38, Lemma 3.8], but later found out that it had
been obtained in [13, Theorem 4.1] for the regular pencil case. This theorem play a major
role in this paper.

Theorem A.1 ([13, 38]). Let AAA−λBBB be a positive semidefinite Hermitian pencil of order
n, and suppose that λ0 ∈ R such that AAA− λ0BBB ≽ 0.

1. There exists a nonsingular W ∈ Cn×n such that

WHAAAW =


n1 r−n1 n−r

n1 Λ1

r−n1 Λ0

n−r Λ∞

, WHBBBW =


n1 r−n1 n−r

n1 Ω1

r−n1 Ω0

n−r 0

, (A.3)

where
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(a) Λ1 = diag(s1α1, . . . , sn1αn1), Ω1 = diag(s1, . . . , sn1), si = ±1, and Λ1−λ0Ω1 ≻
0;

(b) Λ0 = diag(Λ0,1, . . . , Λ0,m+m0) and Ω0 = diag(Ω0,1, . . . , Ω0,m+m0) with

Λ0,i = tiλ0, Ω0,i = ti = ±1, for 1 ≤ i ≤ m,

Λ0,i =

[
0 λ0
λ0 1

]
, Ω0,i =

[
0 1
1 0

]
, for m+ 1 ≤ i ≤ m+m0.

There is no such pair (Λ0, Ω0) if AAA− λ0BBB ≻ 0. Evidently m+ 2m0 = r − n1.

(c) Λ∞ = diag(αr+1, . . . , αn) ≽ 0 with αi ∈ {1, 0} for r + 1 ≤ i ≤ n.

The representations in (A.3) are uniquely determined by AAA−λBBB, up to a simultane-
ous permutation of the corresponding 1× 1 and 2× 2 diagonal block pairs (siαi, si)
for 1 ≤ i ≤ n1, (Λ0,i, Ω0,i) for 1 ≤ i ≤ m+m0, and (αi, 0) for r + 1 ≤ i ≤ n.

2. AAA − λBBB has n+ + n− finite eigenvalues all of which are real. Denote these finite
eigenvalues by λ±i and arrange them as21

λ−1 ≤ · · · ≤ λ−n− ≤ λ+1 ≤ · · · ≤ λ+n+
. (A.4)

3. {γ ∈ R |AAA − γBBB ≽ 0} = [λ−n− , λ
+
1 ]. Moreover, if AAA − λBBB is regular, then AAA− λBBB is

a positive definite pencil if and only if λ−n− < λ+1 , in which case

{γ ∈ R |AAA− γBBB ≻ 0} = (λ−n− , λ
+
1 ).

The next perturbation theorem for positive definite pencils seem to be new. It resem-
bles various perturbation bounds in [8, 32, 33, 54, 57]. For the definition and properties of
such unitarily invariant norms, the reader is referred to [6, 56] for details. In this article,
for convenience, any ∥ · ∥ui we use is generic to matrix sizes in the sense that it applies to
matrices of all sizes. Examples include the matrix spectral norm ∥ · ∥2 and the Frobenius
norm ∥ · ∥F. Two important properties of unitarily invariant norms are

∥X∥2 ≤ ∥X∥ui, ∥XY Z∥ui ≤ ∥X∥2 · ∥Y ∥ui · ∥Z∥2 (A.5)

for any matrices X, Y , and Z of compatible sizes.

Theorem A.2. Let AAA − λBBB and ÃAA − λB̃BB be two positive definite Hermitian pencils of
order n, admitting the following eigen-decompositions22:

WHAAAW = JΛ, WHBBBW = J, (A.6a)

W̃HÃAAW̃ = J̃ Λ̃, W̃HB̃BBW̃ = J̃ , (A.6b)

where Λ is diagonal with diagonal entries consisting eigenvalues of AAA − λBBB in ascending
order, J = diag(−Ii−(BBB), Ii+(BBB)), and similarly for Λ̃ and J̃ . Then for any unitarily
invariant norm ∥ · ∥ui,

∥Λ̃− Λ∥ui ≤ ∥W∥2∥W̃∥2
(
∥ÃAA−AAA∥ui + ξ∥B̃BB −BBB∥ui

)
, (A.7)

where ξ = max{∥Λ∥2, ∥Λ̃∥2}.
21This ordering is different from the one we used in [38, 37] for the neg-type eigenvalues, in order to be

consistent with what we will be using later for hyperbolic matrix polynomials. See Theorem 2.1.
22Such decompositions are guaranteed by Theorem A.1
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Proof. We have

AAAWWHBBB −BBBWWHAAA = 0,

ÃAAWWHBBB − B̃BBWWHAAA = ÃAAWWHBBB − B̃BBWWHAAA− (AAAWWHBBB −BBBWWHAAA)

= (ÃAA−AAA)WWHBBB − (B̃BB −BBB)WWHAAA. (A.8)

Pre- and post-multiply (A.8) by J̃W̃H andWJ , and plug the decompositions in (A.6) into
(A.8) to get

Λ̃W̃−1W − W̃−1WΛ = J̃W̃H(ÃAA−AAA)W − J̃W̃H(B̃BB −BBB)WΛ. (A.9)

Switching the roles of AAA− λBBB and ÃAA− λB̃BB, we conclude from (A.9) that

ΛW−1W̃ −W−1W̃ Λ̃ = JWH(AAA− ÃAA)W̃ − JWH(BBB − B̃BB)W̃ Λ̃. (A.10)

It follows from (A.9) and (A.10) that

∥Λ̃W̃−1W − W̃−1WΛ∥ui ≤ ∥W∥2∥W̃∥2
(
∥ÃAA−AAA∥ui + ξ∥B̃BB −BBB∥ui

)
, (A.11a)

∥ΛW−1W̃ −W−1W̃ Λ̃∥ui ≤ ∥W∥2∥W̃∥2
(
∥ÃAA−AAA∥ui + ξ∥B̃BB −BBB∥ui

)
. (A.11b)

Let W̃−1W = UΣV H be the SVD of W̃−1W and set CCC = V HΛV and C̃CC = UHΛ̃U ,
both of which are Hermitian. It can be verified that

Λ̃W̃−1W − W̃−1WΛ = U(C̃CCΣ −ΣCCC)V H,

ΛW−1W̃ −W−1W̃ Λ̃ = V (CCCΣ−1 −Σ−1C̃CC)U.

Theorem 2.1 of [7] yields

∥C̃CC −CCC∥2ui ≤ ∥C̃CCΣ −ΣCCC∥ui∥CCCΣ−1 −Σ−1C̃CC∥ui. (A.12)

Mirsky’s theorem [56, p.204] says

∥Λ̃− Λ∥ui ≤ ∥C̃CC −CCC∥ui. (A.13)

The main result (A.7) is now a consequence of (A.11) – (A.13).

In Theorem A.2, the upper bound by (A.7) contains ∥W∥2 and ∥W̃∥2. They can be
bounded, too, in terms of extreme pos- and neg-type eigenvalues.

Theorem A.3. Let AAA−λBBB be a positive definite Hermitian pencil of order n, with eigen-
values given by and ordered as in (A.4), and let its eigen-decomposition be given by (A.6a).
Then for any λ0 ∈ (λ−n− , λ

+
1 )

∥W∥2 ≤
√

max{λ+n+ − λ0, λ0 − λ−1 }∥(AAA− λ0BBB)−1∥2, (A.14a)

∥W−1∥2 ≤
√

1

min{λ+1 − λ0, λ0 − λ−n−}
∥AAA− λ0BBB∥2. (A.14b)
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In particular, taking λ0 = (λ−n− + λ+1 )/2 gives

∥W∥2 ≤
√

(λ+n+ − λ−1 )∥(AAA− λ0BBB)−1∥2, (A.15a)

∥W−1∥2 ≤
√

2

λ+1 − λ−n−

∥AAA− λ0BBB∥2. (A.15b)

Proof. For λ0 ∈ (λ−n− , λ
+
1 ), AAA− λ0BBB ≻ 0. We have AAA− λ0BBB ≽ λmin(AAA− λ0BBB)In and thus

λmin(AAA− λ0BBB)WHW ≼WH(AAA− λ0BBB)W = J(Λ− λ0I) ≼ max{λ+n+
− λ0, λ0 − λ−1 } I

which gives (A.14a). We also have

WH(AAA− λ0BBB)W = J(Λ− λ0I) ≽ min{λ+1 − λ0, λ0 − λ−n−}I

to give

W−HW−1 ≼ 1

min{λ+1 − λ0, λ0 − λ−n−}
(AAA− λ0BBB)

which yields (A.14b).
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[1] A.R. Amir-Moéz. Extreme properties of eigenvalues of a Hermitian transformation and sin-
gular values of the sum and product of linear transformations. Duke Math. J., 23:463–476,
1956.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, 3rd edition, 1999.

[3] Zhaojun Bai, Ren-Cang Li, and Yangfeng Su. Lecture notes on matrix eigenvalue computa-
tions. Prepared for 2009 Summer School on Numerical Linear Algebra, Chinese Academy of
Science, July 2009.

[4] Lawrence Barkwell and Peter Lancaster. Overdamped and gyroscopic vibrating systems. J.
Appl. Mech., 59(1):176–181, 1992.

[5] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection
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