A e MATHEMATICS

ARLINGTON. Preprint Series

g dﬁ
[ " )
by If-

The Hyperbolic Quadratic
Eigenvalue Problem

Xin Liang
Ren-Cang L.i

Technical Report 2014-01

http://www.uta.edu/math/preprint/



The Hyperbolic Quadratic Eigenvalue Problem

Xin Liang* Ren-Cang Li'

January 8, 2014

Abstract

The hyperbolic quadratic eigenvalue problem (HQEP) was shown to admit the
Courant-Fischer type min-max principles in 1955 by Duffin and Cauchy type inter-
lacing inequalities in 2010 by Veseli¢. It can be regarded as the closest analogue
(among all kinds of quadratic eigenvalue problems) to the standard Hermitian eigen-
value problem (among all kinds of standard eigenvalue problems). In this paper, we
conduct a systematic study on HQEP both theoretically and numerically. In the theo-
retic front, we generalize Wiedlandt-Lidskii type min-max principles and, as a special
case, Ky-Fan type trace min/max principles and establish Weyl type and Mirsky type
perturbation results when an HQEP is perturbed to another HQEP. In the numer-
ical front, we justify the natural generalization of the Rayleigh-Ritz procedure with
the existing and our new optimization principles and, as consequences of these princi-
ples, we extend various current optimization approaches — steepest descent/ascent and
nonlinear conjugate gradient type methods for the Hermitian eigenvalue problem — to
calculate few extreme quadratic eigenvalues (of both pos- and neg-type). A detailed
convergent analysis is given on the steepest descent/ascent methods. The analysis
reveals the intrinsic quantities that control convergence rates and consequently yields
ways of constructing effective preconditioners. Numerical examples are presented to
demonstrate the proposed theory and algorithms.
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1 Introduction

It was argued in [26] that the hyperbolic quadratic eigenvalue problem (HQEP) is the
closest analogue of the standard Hermitian eigenvalue problem when it comes to the
quadratic eigenvalue problem (QEP)

(MA+AB+C)x = 0. (1.1)

In many ways, both problems share common properties: the eigenvalues are all real, and
for HQEP there is a version of the min-max principles [12, 1955] that is very much like
the Courant-Fischer min-max principles.

One source of QEPs (1.1) is dynamical systems with friction, where A, C' are associ-
ated with the kinetic-energy and potential-energy quadratic form, respectively, and B is
associated with the Rayleigh dissipation function [16, 65]. When A, B, and C are Hermi-
tian, and A and B are positive definite and C positive semidefinite, we say the dynamical
system is overdamped if

(1 Bx)? — 4(2M Az)(2Cz) > 0 for any nonzero vector z.

Overdamped dynamical systems are common in elevator and car braking systems'. A
HQEP is slightly more general than an overdamped QEP in that B and C are no longer
required positive definite or positive semidefinite, respectively. However, a a suitable shift
in A can turn a HQEP into an overdamped QEP [20].

If (1.1) is satisfied for a scalar A and nonzero vector z, we call A a quadratic eigenvalue,
x an associated quadratic eigenvector, and (A, x) a quadratic eigenpair.

In this paper, we will launch a systematic study of the HQEP both in theory and
numerical computations that will further reinforce the belief that this class of QEP is the
closest analogue to the standard Hermitian eigenvalue problem. In the theoretical front,
we will

e review existing results of Courant-Fischer type min-max principles, Cauchy interlac-
ing inequalities;

e establish Wielandt-Lidskii type min-max principles for the sums of selected quadratic
eigenvalues and, as corollaries, trace min/max type principles;

e establish perturbation results in the spectral and Frobenius norm, as well as general
unitarily invariant norms on how the quadratic eigenvalues will change if A, B, C
are perturbed.

In the numerical front, we will

e justify a naturally extended Rayleigh-Ritz type procedure, with the existing and
newly established min-max principles, why the procedure will produce the best ap-
proximations to quadratic eigenvalues/eigenvectors;

e propose extended steepest descent/ascent and CG type methods for computing ex-
treme quadratic eigenpairs;

W. Kahan, private cmmunications, November 2013.



e establish convergence results, including the rate of convergence for the extended
steepest descent/ascent methods, which shed light on preconditioning in what con-
stitutes a good preconditioner and how to construct one.

In a separate paper, we will extend most of the development in this paper to the hyperbolic
polynomial eigenvalue problem.

The rest of this paper is organized as follows. In section 2, we collect some properties
for hyperbolic quadratic matrix polynomials and establish a few more about an HQEP.
Wielandt-Lidskii type min-max principles, among others, are given in section 3. Eigen-
perturbation analysis for HQEP is done in section 4. In section 5, we justify the use
of the Rayleigh-Ritz procedure for extracting interested quadratic eigenvalues and their
associated quadratic eigenvectors within a given subspace. The steepest descent/ascent
method and its extended variation are studied in section 6, where a detailed convergence
analysis is performed. Section 7 investigates the preconditioning techniques to speed up
the extended steepest descent/ascent method and explain how an effective preconditioner
should be constructed from two different perspectives. Section 8 introduces the block
variations of the methods in the previous two sections. Various conjugate gradient methods
— the plain, locally optimal, and extended subspace search versions combined with suitable
preconditoners and blocking — are described in detail in section 9. Two numerical examples
are presented in section 10 to demonstrate the effectiveness of the locally optimal block
preconditioned conjugate gradient method in the previous section. Finally in section 11, we
present our concluding remarks. In appendix section A, we review the Jordan canonical
form of a positive semidefinite matrix pencil and establish a perturbation theory for a
positive definite matrix pencil for use in section 4.

Notation. Throughout this paper, C"*™ is the set of all n x m complex matrices,
C" = C™!, and C = C!. R is the set of all real numbers. I,, (or simply I if its dimension
is clear from the context) is the n x n identity matrix, and e; is its jth column. X H is the
conjugate transpose of a vector or matrix. For X € C™*™ o, (X) is the smallest singular
value of X (X has min{m,n} singular values), || X||2 and || X||r and || X ||, are the spectral,
Frobenius, and a general unitarily invariant norm of X, and so(X) = || X ||]2||X ||z is the
condition number of X.

A >0 (A > 0) means that A is Hermitian positive (semi-)definite, and A <0 (A < 0)
if —A>0(—A>0). AY2 = 0 is the unique square root of A > 0.

The integer triplet (i_(H),io(H),i+(H)) denotes the inertia of an Hermitian matrix
H, meaning that H has i_(H) negative, io(H) zero, and iy (H) positive eigenvalues,
respectively, and Apin(H) and A\pax(H) are its smallest and largest eigenvalue.

Generic notation eig( - ) is the set of all eigenvalues, counting algebraic multiplicities, of
a matrix or a matrix pencil, depending on its argument(s): eig(A) is for A, and eig(A, B)
is for A — AB. We use polyeig(Ag, A1, -+, Ar) as MATLAB’s function polyeig for the
set of all polynomial eigenvalues of A\* A 4 --- + AA; 4+ Ag. Note polyeig(Ag, A1) is not
the same of eig(Ap, A1).



2 Hyperbolic quadratic matrix polynomial
Given A, B,C € C™*", define

Q(\) :== ) A+ A\B+C, (2.1)
a quadratic matrix polynomial of order n.

Definition 2.1. Q(\) is said Hermitian if A, B, and C are all Hermitian, hyperbolic if it
is Hermitian, A > 0, and

(z1Bx)? — 4(aM Az) (2" Cz) > 0, for all 0 # z € C, (2.2)
overdamped if it is hyperbolic as well as B > 0,C > 0. For a hyperbolic Q(\), define

¢(z) = [(ﬂ:HBx)2 - 4($HA93)(xHC:E)}1/2, Go(x) == ;(Hx; (2.3)

The quadratic eigenvalue problem (QEP) for Q(-) is to find A € C and 0 # =z € C"
such that

Q(N)zx =0.

When this equation is satisfied, A is called a quadratic eigenvalue and = the associ-
ated quadratic eigenvector. Evidently all quadratic eigenvalues of Q(-) is the roots of
det Q(A\) = 0 which has 2n (complex) roots, counting multiplicities.

The next theorem summarizes some of the relevant theoretical results on hyperbolic
quadratic polynomials. They can be found in Guo and Lancaster [20] which is an excellent
gateway to references of origins for these results. Item 3(c) can be found in [64, (0.7)].

Theorem 2.1. Let Q(\) = A2A + AB + C as in (2.1) be Hermitian with A = 0.
1. Q(N) is hyperbolic if and only if there exists \g € R such that Q(\g) < 0.
2. If Q(N) is hyperbolic, then its quadratic eigenvalues are all real.

3. Suppose Q(N) is hyperbolic. Denote its quadratic eigenvalues by )\ii and arrange
them in the order of
A << <A << (2.4)

Then

(a) Q(N\) <0 for all X\ € (\,;,\]);

(b) Q(\) = 0 for all A € (—oo, A\] ) U (A}, 4+00);

(¢) the inertia of Q(\) is (n —k,0,k) for X € ()\;j, )\Ll) or A\ € (A;ﬁk,)\;Hik) for
k=1,---,n, concluding that Q(\) is indefinite for A € (AP, \7P);

(d) Q(N\) is overdamped if and only if A} < 0.



An immediate consequence of Theorem 2.1 is a test to determine whether Q(\) is
hyperbolic or not [20]: check if its quadratic eigenvalues are all real and, in the case they
are all real, check if @(\g) < 0, where Ao = (A, + A])/2.

A common technique of solving QEP (1.1), or more generally the polynomial eigenvalue
problem, is linearization that converts a polynomial eigenvalue problem to an equivalent
generalized (linear) eigenvalue problem of a matrix pencil [16, 25, 42].

Under the condition that A is nonsingular, QEP (1.1) is equivalent to the generalized
eigenvalue problem of the following matrix pencil

Lo(\) = [‘OC 21] A [ﬁ ‘6‘] — o — 2\, (2.5)
: Ho(N) = [_OC :g] - A [_OC Sx] = —\B (2.6)

in the sense that polyeig(C, B, A) = eig(«/, #) and associated eigenvectors of one can be
recovered from those for the other. More can be said if Q(\) = A\2A+AB+C is hyperbolic.
Relevant results are summarized in the following lemma, where item 5 is essentially in [4]
(see also [9], [26, Theorem 3.6], and [63, Theorem 5A]).

Theorem 2.2. Let Q(\) = NA+ AB + C as in (2.1) and let Lo(\) be as in (2.5).
Suppose A is nonsingular.

1. polyeig(C, B, A) = eig(+, B).

2. If A= 0 and B is Hermitian, then the inertia of % is (n,0,n).

3. If (u, z) is an eigenpair of Q(N), then (i, [;x]) is an eigenpair of Zg(\).

4. If (u, [ﬂ) is an eigenpair of Lo (N), then (u,x) is an eigenpair of Q(N\) and y = p.

5. Suppose Q(N) is Hermitian. Q(X) is hyperbolic if and only if Lgp(\) is a positive
definite pencil.

6. Suppose Q(N) is hyperbolic, and adopt the notation in item 3 of Theorem 2.1. Then
ZLo\) =0 for all X € (A, \]).

Proof. Since for any A € C,

B R | i & RPN

Thus (—1)" det Q(\) -det A = det Zg(\) and item 1 follows. For item 2, A - 0 guarantees
that there is a nonsingular matrix X € C™*™ such that

XUAX =1,, XUBX = diag(wi,...,wn) =: 12,



where w; € R. We have

H
X X Q I,
C el e &
whose eigenvalues are the union of all the eigenvalues of

Wi 1 .
[1 0} fori=1,2,...,n.

But the two eigenvalues of each one of these 2 x 2 matrices are

w; — yJw? +4 w; + /w2 +4
5 <0, f>0'

Therefore the last matrix in (2.8) has n positive and n negative eigenvalues, as expected.
Items 3 and 4 can be verified in a straightforward way by using (2.7). Also by using (2.7),
we see that diag(—Q()\), A) and Zg(\) are congruent for all A € R, and hence items 5
and 6 follow from items 1 and 3(a) of Theorem 2.1, respectively. O

One consequence of Theorem 2.2 is that any hyperbolic Q(\) = A\2A + AB + C gives
rise to a positive definite matrix pencil Zg(\) as defined by (2.5) with # having inertia
(n,0,n). There is a converse to the statement, too.

Theorem 2.3. Let L(\) = o/ — AP be a positive definite Hermitian pair of order 2n. If
the inertia of A is (n,0,n), then there exists a hyperbolic Q(\) = N2A + AB + C and a
nonsingular matriz U € C?"*2" such that the following statements are true.

1. If (p, ) is a quadratic eigenpair of Q(N), then (u, U [lj;}) is an eigenpair of L(\).

z z

2. If (p, {g]]) is an eigenpair of L(\) and we define B] =U! L;], where © € C",
then (u,x) is a quadratic eigenpair of Q(\) and y = px.

Proof. Since L()\) is positive definite and the inertia of # is (n,0,n), by Theorem A.1
there exists a nonsingular matrix W such that WH.a/W = diag(A,, —A4_) and WHZW =
diag(I, —1I), where A, = diag(A\], -, \b), A- = diag(A[,---,\,) and \¥ € R and
/\j > A for all ¢ and j. Set

A:I, B:—(A++A_)7 C:A+A_,

o [A- I (Ay — A)~1/2 0
/- 0 (Ay — A)7V2)”

and Q(\) = N2A + AB + C. It can be verified that corresponding to this @()\), Zo(\)
of (2.5) satisfies Zp(\) = SHWHL(A)WS. Since L()) is positive definite, there is a
Ao € R such that L(X\g) = 0 which implies Zg(Ao) = 0 and thus Q(A\g) < 0 by (2.7).
Consequently, this @(A) is hyperbolic by item 1 of Theorem 2.1. Finally take U = WS
for items 1 and 2. O



Theorem 2.4. Let Q(\) = N2A+AB+C be hyperbolic. Then for any X € C™™ satisfying
XHAX =1,
(XUBXx)? —4(x"CX) - 0. (2.9)

Proof. For any y € C™ with ||y||e = 1, write z = Xy. We have

YU [(XUBX)? —4(xHCX)]y
= (X"BXy)"(X"BXy) — 4(Xy)"C(Xy)

= |lyl3 - IX"BXy|3 — 4(Xy)"C(Xy) - g™ (XTAX)y (2.10)
> [yH(X"BXy)]” — 40Xy O(Xy) - (Xy)TA(Xy) (2.11)
= (zM"'Bx)? — 428 Cx - 2M Az

> 0, (2.12)

where we have used |yl = 1 and X"AX = I, for (2.10), and used the Cauchy-
Bunyakovsky-Schwarz inequality for (2.11). Therefore (X"BX)? — 4(X"CX) = 0 by
(2.12). O

Theorem 2.5. Let Q(\) = \2A + AB + C be a hyperbolic quadratic matriz polynomial of
order n, and denote by )\Z?t its quadratic eigenvalues which are arranged as in (2.4). Set

A+ :dlag()‘i‘_a >A:)7 A :dlag()‘l_7 7)‘77) (213)

Then there exists nonsingular Z € C*"*?" of the form

vy U
7 = [U+ A U A} , (2.14)

where Uy, U_ € C"™™ are nonsingular and

T=U;'U- (2.15)
s unitary, such that
-C A
H _ 7H _ |+
pazem [ oo ] 100
B A I
H _ H _ |4n
ZVRBL =7 [ A }Z—[ _In:|. (2.16b)
Write
Uy = [uf,ug,..ut], U =[up,uy,...u,l.

As a consequence of (2.14) and (2.16), we have the following statements.

1. Q(\NHuf =0, QA )u; =0 fori=1,2,--- ,n. Thus there are n linearly indepen-
dent quadratic eigenvectors associated with all )\f, and the same can be said about
quadratic eigenvectors associated with all X; .

2. g(uii)zlforizl,Q,...,n.



3. Q(N) admits

Q) =U-"(\ — A)URAUL (N - AU, (2.17a)

Q) =U BN — A URAU_(AT - AUt (2.17b)

4. UBAU, = (AL T—TA_)"t. As aresult, A, B,C and Q()\) can be expressed in terms
of Ax and any two of Uy, U_, and T, assuming (2.15). In particular,

A=v; out, (2.18a)
B=U;"I-6A;-A,0)U ", (2.18b)
C=U;"MA044 — AU, (2.18¢c)
Q) =urH [(AI —ADOWN — AL) + (M — Ap)| U, (2.18d)
where
O=(Ay —rA_THL (2.18¢)
5. We have
A—1/2
[Usll2 = U-]l2 < A7 7l , (2.19a)
A=
U 2 = U= 2 < A2 lay/ AT = AT, (2.19b)
A=A
K}(U+) = K/(U_) S \/ KJ(A) )\‘”7)\7’ (2190)
1~ \n
and _
1Z]l2 < ENlUL]l2, 11272 < ﬁ 1 2, (2.20)
1~ \n

where &4 = max{|A\T|, [N} and

_ 2+ +&€ + V(6 — 12+ (- + DI+ +1)% + (6 —1)?]
> :

—_
—
—

The following converse to item 4 is also true: given diagonal matrices Ay as in (2.13)
and two of Uy, U_, and T, where T € C™*" as in (2.15) is unitary and U, U_ € C"*"
are nonsingular, if /\Zi can be arranged as in (2.4), then the quadratic matriz polynomial
constructed by (2.18) is hyperbolic.

Proof. Since Q(\) is hyperbolic, Zg()) in (2.5) is a positive definite pencil. By Theo-
rem A.1, there exists a nonsingular Z € C*"*2" to give (2.16). We have to show that Z
must take the form (2.14).

Since each column of Z is an eigenvector of the pencil .Zg()), by Theorem 2.2, we
Jr

conclude that the ith column of Z can be expressed as _I:Z 4| for1 <7 <nand Y
A u; /\j u;

9



for 1 < j =1i—n <n, where u;, u; are the corresponding quadratic eigenvectors of Q)
associated with A" and A, respectively. Hence Z takes the form (2.14).

Blockwise, the equations in (2.16) yield

UBcu, — AL URAUL AL = — Ay, (2.21a)
Ulcu_ —A_UMAU_A_ = A_, (2.21D)
UBcu_ — AL URAU_A- = 0, (2.21c)
UMBU, + UBAUL AL + ALUR AU, = 1, (2.21d)
URBU_ +UBAU A+ A UBAU_ =1, (2.21¢)
UYBU_ + UYAU_A_ + ALUTAU_ = 0. (2.21f)

We claim that U is nonsingular. Consider Uiz = 0 for some xz € C". We will prove that
xz = 0 and thus U} is nonsingular. By (2.21d),

ety = o 1e = MUY BUL + URAUL AL + AU AU )z =0

which implies z = 0, as was to be shown. Similarly, U_ is nonsingular.
Next, we define R R
Ay =U AU, A =U_A_UL (2.22)

We deduce from (2.21c) and (2.21f) the expressions for C' and B in (2.23a) below, and
then use C' = C" and B = BY to get (2.23D).

C=AAA,, B=-AA, — A"4, (2.23a)

C=AAA_, B=-AA_ - ATA (2.23b)
Using the second equation in (2.23a), we deduce from (2.21d) and (2.21e) that
UH U = B+ AAL + A= (AL — A)HA,
U-HU= = —B— AA_ — AMA = A4, — ).
So U MUt = (w-Huzh! = uZHU=!. Thus,
witvHvitve =vtu"uttu =1,

which infers 7" := U;lU, is unitary.

Item 1 is straightforward. We now prove item 2 for uj and the case for u; can be
handled in exactly the same way. Write a; = (uf )" Aul, b = (v )8Bu, and ¢; =
(u)HCuf. By (2.21a) and (2.21d), we have

ci —(N)%a; ==\, b +2a0 =1
solving which for ¢; and b; to get
b? — daic; = (1 — 2ai)\j)2 —da;[-\ + ()\2-)2%] =1.
For item 3, we have, by (2.23),
QM) = (M = A AN - 4y), Q) = (M- A AT - A1)

10



which, together with (2.22), yield (2.17). For item 4, write A_y = YA_TH, then A, —
A_.y > 0 because for z # 0,

e Ay — A_y)z > N ale — A, 28rHre = OF = A)2fz >0
which also implies
0< (A —A_p) =N =27 (2.24)
Substitute U_ = U,Y into (2.21c) to get UXCU; — AL UM AU A_y = 0 and thus by
(2.21a), we have
0=URCU; — AL, URAU, AL + Ay
= A USAUL Ay — ALUTAUL AL + AL
= A4 |I - UL AU (A4 — A_x)|. (2.25)
Substitute Uy = U_T into (2.21c) to get UNCU_ — A4 xURAU_A_ =0, where A,y =
THA,T. Thus by (2.21b), we have
0=U"%cU_ - A U8AU_A_ — A_
= Ay URAU_A_ — A_UBAU_A_ — A
S [I — (Apr — AUPAU_| A (2.26)
We note that at least one of Ay and A_ is nonsingular. If A is nonsingular, then (2.25)

implies

UBAUL (Ay —A_y) =T = UNAU; = (A4 — A_y)™h (2.27)
If A_ is nonsingular, then (2.26) implies (A, — A_)UMAU_ = I which, upon using
U_ =U,T, also implies the second equation in (2.27). Then URAU, = (A, T —TA_)~L.
SO, U_IEAU+ = @, UEBU+ = —@A+ — A_;T@, and UYEC'[]Jr = A_;T@AJF. Noticing

A,;TQ — —(A+ - Af;T)Q + A+9 — —I + A+@,

we have (2.18).
For item 5, the equalities in (2.19) is a consequence of U_ = U, 7 and that 7 is unitary.
We now prove (2.19) for Uy. Use (AY2U,)H(AY2U,) = O to get

A-1/2
10412 < 14722l 4120 )12 = A7 2Oz < H
1~ \n

and use (U;lA_l/z)(UJ:lA_l/Q)H = 07! to get

(U 2 < U AT2 2 AY2 2 = V07Tl A2z < AV 2y /AT = AT

They give (2.19a) and (2.19b) for U,. Combine (2.19a) and (2.19b) to get (2.19¢). For
the first inequality in (2.20), we have

i e

§v &

Ul [1U-l2 }

Zllo < = ||U.
” |2_H[HU+H2£+ 10 e ||, = 10+

2

= U425
2

11



For the second inequality, we notice by using U_ = U,T

N AR %]

where S =TA_ — A, Y = —O~'7. This expression, after some calculations, leads to

g _[I =rsT [ 1 o]fuyt 0
S0 St |-Ar Ij o Ut
_[rsTltrart rs-Y vt o
Tl =Sty st o ut)e

and thus
- - & 1 ~1 ~1 -
12742 < IS %H[ 10 s = U5 2161152
&1 ) + +

which implies the second inequality in (2.20).

We now prove the converse of item 4. First © is Hermitian and © >~ 0 by (2.24).
Obviously A, B,C in (2.18) is Hermitian and A = 0. Choose A\g = (A{ + A,;)/2, then
Ot =AL — Xl =0and © < (A; — M\gI)~!. Thus,

UBQ(M\)Uy = (A — XI)O(Ay — NI) — (Ay — NoI) <0
which says Q(\g) < 0. By item 1 of Theorem 2.1, Q(A) is hyperbolic. O

Remark 2.1. 1. Each of the decompositions in (2.17) doesn’t reflect the symmetry
property in Q(\) somewhat. However, using the fact that 1 = U;lU, is unitary,
we can turn them into

Q) =U O — 1A Y™ (AL —TA_TH) YN - AU, (2.28a)
Q) =U-H - 7IA )T A — A )TN - AU (2.28b)

These equations are essentially the decomposition in [43, Theorem 31.24] but with
more detail.

2. [22, Lemma 6.1] and Problem gen_hyper2 of [5] provide a different set of formulas

for B and C:
B=U"[-6(AL -ra27rhHelut, (2.292)
C=U;"-6 -rA2r%Ho

+ oA —ra2rhe: —-ra2rhelut. (2.29b)
[31, Corollary 6] provides yet another formula for C:
C=U "]~ (A —ratrh)y ot (2.30)

Although both (2.29) and (2.30) look more complicated than ours for B and C in
(2.18b) and (2.18c), they are actually the same in theory. In fact, we have

o2 —rA2TMe =642 - AL —671H)6e
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=A,0+0A -1 (2.31)
which says (2.29a) is the same as (2.18b).
/1_Tr1 —rATirt = /1_;1 T (use (2.18e))

=AN(-oH[Ar -0 (e X' -V l=X"Yy - Xy
— —(A+@A+ - A_A,_)il.
So (2.30) is the same as (2.18c). Finally
o —rA3rHe =043 - (AL -6 Pe
=o' +oA2 + 20 +04,07 4,0 -64,671
-0 A,0 -4,
Therefore use also (2.31) to get
—0(AL — A3 rhe + 042 —rA2 el —TAirTe
=-(O@ '+l + 1420 +04,07 4,0 -04,67 —O67T A6 — Ay)
+(OA, + A0 -1 O OA + 4,6 1)
=—O@ '+l + 420 +04,07 4,0 04,67 —67T A6 — Ay)
+O071 04,07 — AL — AL +OAT + AL OAL
-0 ' A0+604,671 0,0+ 420
= -y + A0,
which proves that (2.29b) is the same as (2.18c).

. A4 in (2.22) are two solutions of the matrix equation
AX?+BX +C =0. (2.32)
In fact,
AUL AL U + B(UL AU + C = (AUL A% + BUL Ay + CUL)UL =0,

and similarly for AU_A_U"Y)? + B{U_A_U~') + C = 0. On the other hand,
the ability of solving (2.32) factorizes @Q(\) into the product of two linear matrix
polynomials, based on which Guo and Lancaster [20] proposed their solvent approach
for solving HQEP (1.1) of modest sizes.
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3 Variational principles

Throughout this section, Q(\) = A2A+AB+C € C™*" will be always assumed a hyperbolic
quadratic matrix polynomial and the notations in Theorem 2.5 will be kept. The scalar
Ao is as in item 1 of Theorem 2.1 such that Q(\g) < 0.

Consider the following equation in A

fOz) = 21QN)z = N2 (2 Ax) + A2 Bx) + («1Cz) =0, (3.1)

given z # 0. Since Q()\) is hyperbolic, this equation always has two distinct real roots (as
functions of x)

—wH T xH :U2— wH X I’H x 1/2
pata) = "B EB LA A0 32)

We shall call pi(z) the pos-type Rayleigh quotient of Q(\) at z, and p_(z) the neg-type
Rayleigh quotient of Q(\) at x. It is easy to verify that for any x # 0, pi(z) € R,
and pi(ax) = pi(z) for any @ € C. By the elementary knowledge of scalar quadratic
polynomials, we have

1Bz +HCx
pr(a) +p-(2) =~ p+(@) p-(2) = (3.3)
Both will be used later in this paper.
Theorem 3.1. We have
p+($) € [)‘fv)‘j{]’ p,(l‘) € [)‘IvAr:]’ (34)
¢(x) == [(xHBa:)2 - 4(xHA$)(xHCx)}1/2 = +[2p+(z) 2% Az + 2% Ba], (3.5)
s(x _ _
o) = S € [F A7 Awin (), (4F — A7) Ao )] (3.6)

Consequently, \;” = p4(uj") for the quadratic eigenpair (\;,u;") and p_ (uj) = A; for the

quadratic eigenpair ()\j_, uj_)

Proof. By item 3 of Theorem 2.1, for any fixed nonzero z, f(\,z) < 0 for A € (A, \]) and
f(A\,z) > 0for A € (—oo, A7) U (A}, +00). Thus, the larger root of the scalar quadratic
equation f(A,x) = 0 in A must lie in [\, \}] and the smaller one in [A{,\;]. That is
(3.4). For (3.5), we have

2p+(z) 2" Az + 2" Bx = [ - 2" Bz & \/($HB{L‘)2 — 4(2H Az)(28Cz) | + 2" Bz
= +¢(x).

Lastly, the inclusion (3.6) is a result of ¢(z) = [p4(z) — p_(z)] 2% Az. O
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3.1 Courant-Fischer type min-max principles

Theorem 3.2 below is a restatement of [43, Theorem 32.10, Theorem 32.11 and Re-
mark 32.13]. However, it is essentially due to Duffin [12, 1955] whose proof, although
for overdamped @, works for the general hyperbolic case. Closely related ones for more
general nonlinear eigenvalue problems (other than quadratic eigenvalue problems) can be
found in [49, 50, 66, 67]. They can be considered as a generalization of the Courant-Fischer
min-max principles (see [47, p.206], [56, p.201]).

Theorem 3.2 ([12]). We have for1 <i<mn

A= i .
; max  min p.(z), (3.7a)
codim X=i—1 xz#0
A= i .
i Lin, max p+(z), (3.7b)
dim X=i x#0
A= in p_ 3.7
; max  min p—(z), (3.7¢)
codim X=i—1 #0
AT = i _(x). .
i Juin maxp_(z) (3.7d)
dim X=3 ©#0

In particular,

Al =minp(v), A = maxp.(2), (3.8)
A =minp- (), A, = glggpf(w)- (3.8b)

3.2 Wielandt-Lidskii type min-max principles

Theorems 3.3 and 3.4 which can be considered as generalizations of Amir-Moéz type min-
max principles [1] and Theorem 3.5 which can be considered as generalizations of the
Wielandt-Lidskii min-max principles ([39, 69] and also [6, p.67], [56, p.199]) and Ky-Fan
trace min/max principles [15] are new. For the ease of stating them, let A+ € R such that

A <AL <A, <Ao< AT <A<y

Such Ay exist, e.g., A\_ = A] or —oo and Ay = A} or co. Set intervals

j+:

{[)\0,)\+], if A <oo, {[)\,)\0], if A_ > —o0, 59)

[Ag,00), otherwise, (—00, Ag], otherwise.
The following lemma is also essentially due to Duffin [12] whose proof, although for
overdamped (), again works for the general hyperbolic case.

Lemma 3.1. We have

AN > pi(x) for any x € span{uf,ug, ... ul}, (3.10a)

7 a2

A < py(x) for any x € span{u], uf, ;... ut (3.10b)

= i y U J-
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To generalize Amir-Moéz/Wielandt-Lidskii min-max principles, we introduce the fol-
lowing notations. For X € C™** with rank(X) = k, XHQ(\)X is a k x k hyperbolic
quadratic matrix polynomial. Hence its quadratic eigenvalues are real. Denote them by
)\;tX arranged as

My < <Ay <A ¢ <<y (3.11)

Theorem 3.3. Let 1 <11 < --- < i, <n. For any
¢2f+X"'Xj+—>R
~—————
k

that is non-decreasing in each of its arguments, we have?

min su PN o, AN ) =N A, 3.12a
X1C: Chy xj€xj7j12)17..-7k ix ex) i, i) ( )

diInxJ':Zj X=[I1,...,xk]
rank(X)=k
max inf SN x, M x) =P, M), (3.12b)

:leD"'ka ijDC‘j,jil,...7k
codimX;=i;—1  X=[z1,...,x}]
rank(X)=k

If also @ is continuous, then “sup” in (3.12a) and “inf” in (3.12b) can be replaced by

“max” and “min”, respectively. In particular, setting i; = j in (3.12a) and setting
ij =j+n—kin (3.12b), respectively, give
ranf(li?):k@@ix"” Ahx) =P AL, (3.13a)
ranr&%:k@ufx,--- Ax) = OO A (3.13b)
Proof. For convenience, we define, for a matrix W = [wq, ..., wp],
8;w =span{wi,--- ,w;}, Tjw :=span{wj,--- ,w,} forj=1,---,p.

In particular Sy = 8, w, Tw = T1,w, and thus Sy = Tw.
First we prove (3.12b). Recall the quadratic eigenvectors uj introduced in Theo-
rem 2.5. Choose R
X; = span{u;;, coutt forj=1,2,... k. (3.14)

Then X1 D -+ D f)ACk and codirnDACj =i; — 1. By Lemma 3.1, p1(x) > )\:; for any x € f/)\Cj.
Therefore

min p. () = AF.

IGXJ' ’

x#0
For any X = [z1,..., 2] with z; € DACj for j =1,---,k such that rank(X) = k, consider
XHQ(N)X which is a k x k hyperbolic quadratic matrix polynomial. For j = 1,--- ,k,
noticing J; x C X;, we have by Theorem 3.2

)\;FX = max minpi(z) > min py(x) > min pi(z) = Af.
’ XCTx zeX :EG‘T]"X CCE:X:]‘ J

2In (3.12a), it is not clear if the “sup” is attainable for any given X; satisfying the given assumptions,
except for continuous @. The same comment applies to the “inf” in (3.12Db).
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Since @(-) is non-decreasing in each of its arguments,

QS()\IX’... ’)‘—/:,X) > QS(AZ’... ,)\;Z)
which gives
min @()\IX,--- ,)\ZX) > PN\, )

~ i1 ()

2;€X;,j=1,...k ! k
X=[x1,....x1]
rank(X)=k

because z; € DACj for 1 < ¢ < k are arbitrary, subject to rank(X) = k. Therefore

sup inf DA, A ) > @(AZ, e ,)\;;). (3.15)
X1D-DXg z;€X;,7=1,....k ) ’
codimX;=i;—1 X=[x1,...,zx]
rank(X)=k

On the other hand, let X; for j = 1,--- ,k be any subspaces that satisfy the assump-
tions: Xy O .-+ D Xg and codimX; = i; — 1. Define Y; = span{uj, - ,ux} Then
Y1 C -+ C Yy and dimY; = i;. By [1, Corollary 2.2] (see also [37, Lemma 3.2]), there

exists two A-orthonormal sets {x1,..., 2z} and {y1,--- ,yx} with z; € X for j =1,...k
and y; € Y; for 1 < j <k such that

Tx :=span{z1, -, xx} = span{y1, -+, yp} =: Sy

where X = [z1,...,2;] and Y = [y1,---, ] satisfy XHAX = YHAY = I, YHQ(\)Y
is a hyperbolic quadratic matrix polynomial whose pos-type quadratic eigenvalues are
)\iy < ... < )\g’y. Since 8y = Tx, /\;fy = )‘IX for j = 1,---,k. By Lemma 3.1,
p+(y) < )\Z_ for any y € Y;. Therefore

ma; =\,
y69>]_< p+(y) i
y#0

By Theorem 3.2 and noticing 8;y C Y;, we have, for j =1,--- ,k,

AT, = AT, = min max < max < max = \'.
px = Ay = min maxp(y) < max pa(y) < maxpi(y) = Ay
dimY=; y£0 y£0 y£0

Since &(-) is non-decreasing in each of its arguments,
@()\iX’... ’)\;X) < gp()\;;... ’Aitc)’

which gives
. n n N N
zjele,?£1,.,,,k¢(/\1»X’ N SO A,
‘X:[xlv"'vxk]
rank(X )=k

Since X; are arbitrary, we conclude
sup inf DA A ) < 515()\;, e ,)\;;). (3.16)
X1 DXg z;€X;,5=1,...k ) )

codimX;=i;—1 X=[z1,...,z%]
rank(X)=k
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Combine (3.15) and (3.16) to get

sup inf PN o N ) =P A, (3.12b")
X1 DXk z;€X;5,5=1,....k ? ’ k
codimX;=i;—1 X=[z1,...,74]
rank(X)=k
But the “sup” here is achievable by the selection in (3.14). Thus we have (3.12b).

Now we claim the “inf” can be replaced by “min” for a continuous é. Let X; for
j=1,---,k be given and satisfy the assumptions: X1 D --- D X} and codim X; = i; — 1.
There exist a sequence X € C™* with rank(X®) = k and its jth column in X; such
that

lim (AT co AT

1—00 LX(i) ’

pxe) = inf OO o N x)- (3.17)
J Jrd T

X:[(Ifl,...,lk}

rank(X)=k

Without loss of generality, we may assume X () has A-orthonormal columns, i.e.,
(X(i))HAX(i) = Iy;

otherwise we can perform the Gram-Schimdt A-orthogonalization on the columns of X @)
from the last column backwards, and the new X () has the same property as the old X ®:
rank(X () = k and its jth column in X;, and also )‘;txu) remain the same. Since {X®}
is a bounded set in C"** it has a convergent subsequence. Through renaming, we may
assume that {X®} itself is convergent, and let Y € C™** be the limit. It is not hard to
see that YHAY = I}, which implies rank(Y) = k and that the jth column of Y is in X;.
Since (X MHQ(AN) X goes to YHQ(N)Y, by the continuity of quadratic eigenvalues with
respect to the coefficient matrices we conclude
Lim ATy = Ay for 1<j <k

Therefore the left-hand side of (3.17) is equal to @()\iy, RN A;Y), and thus the “inf” in
(3.17) is attainable.

For (3.12a), a proof similar to what we did above for (3.12b) works: choosing DACj =
span{uf, “ee ,u;';} will lead to that the left-hand side is no bigger than its right-hand side,
and choosing Y; = span{u;-;, -+, u} will give the opposite. O

Similarly to Theorem 3.3, we have

Theorem 3.4. Let 1 <111 < --- < i, <n. For any

U 4 x---x I —R
—_————
k

that is non-decreasing in each of its arguments, we have>

min su TN s AL x) =P, A 3.18a
xlccxk xjex],‘jlz)l,,k ( 17X7 ’ k’X) ( n’ ’ Zk)’ ( )
dim X;=i; X=(21,.,2]

rank(X)=k

3In (3.18a), it is not clear if the “sup” is attainable for any given X; satisfying the given assumptions.
The same comment applies to the “inf” in (3.18b).
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inf WAy, AT ) = WA, AT, 3.18b

DC1IDna}D<xk IjElevr]-!zl,...,k ( LX k’X) ( " Zk) ( )
COdiHl:X:j:ij—l X:[xl’.”,mk]
rank(X)=k

If also ¥ is continuous, then “sup” in (3.18a) and “inf” in (3.18b) can be replaced by
“max” and “min”, respectively. In particular, setting i; = j in (3.18a) and setting
ij =j+n—kin (3.18b), respectively, give

rang(l%zkw(Al_vX’ A ex) =YL A, (3.19a)
ranrﬁ%zkzlf()\ix, L Aex) =V A (3.19)

Proof. Consider the hyperbolic quadratic matrix polynomial CA)(A) =MNA+A-B)+C
whose quadratic eigenvalues are

- N v A+
AL <<\, < AT <<

where 5\; = -\, and 5\; = —A,_j+1- Apply (3.12b) to Q(A) with
(&1, &) = =W (ks —E1)
to get (3.18a), and apply (3.12a) to CAQ()\) with the same @ to get (3.18Db). O

Specializing Theorems 3.3 and 3.4 to the case where @ and ¥ are the sum of its argu-
ments gives us Wielandt-Lidskii type min-max principles as summarized in the following
theorem and Ky-Fan type trace min/max principles.

Theorem 3.5. Let 1 <iy < -+ <ip <n and typ € {+,—}. Then

k k
min max Z AP = Z AP, (3.20a)
xlccxk xjexj — s — J
dim Xj=i; X=[z1,...,25] 7~ 7=
rank(X)=k
k k
max min Y AR = " APP (3.20b)
X1D-'~ka LU]'E:X:J' - I - J
codim X;=i;—1 X:[xl,...,xk]le Jj=1
rank(X)=k

In particular, setting i; = j in (3.20a) and setting i; = j +mn — k in (3.20b) give
k k k k
. typ __ typ typ __ typ
ran&%ﬁ%:k Z )\j’ B Z )\j ’ ranllgz)%(})(zk Z Aj’X B Z An_k+j . (321)
7j=1 7j=1 7=1 7=1
3.3 Cauchy type interlacing inequalities

The Cauchy type interlacing inequalities in (3.22) were recently obtained by Veselié¢ [64].
Here we present a simple proof, using our generalizations of Amir-Moéz type min-max
principles in Theorems 3.3 and 3.4.
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Theorem 3.6 (Cauchy-type interlacing inequalities [64]). Suppose X € C™** with rank(X) =
k. Denote the quadratic eigenvalues of XHQ(N\)X by

py <<y <pf <<

Then
No<pd <ML i=1 K, (3.22a)
Ay Sy SN =1k (3.22Db)
Proof. Let
P(o,- -+, ap) = the ith largest «;.

Then this @ satisfies the condition of Theorem 3.3. Making use of (3.13a) and (3.13b)
gives i > AF and pf < /\;:nfk, respectively. That is (3.22a). Similarly, we get (3.22b)
by Theorem 3.4. O

Remark 3.1. The Cauchy type interlacing inequalities in Theorem 3.6 are sharper than
those possibly derivable by linearization. Actually, through linearization and by item 1 of
[38, Theorem 1.1] (which is, in fact, [30, Theorem 2.1]), we can only obtain

+ <t L
)\i SM% S)\I}-Qn_Qkﬂ 2_17'”7k7
Aty SH S A T=10000k,
where we set )\;r = +o0 for ¢ > n and )\j_ = —oo for j < 1.
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4 Perturbation analysis

4.1 Setting the stage

Throughout this section, we suppose that Hermitian matrices A, B, and C' are perturbed
to Hermitian matrices A, B, and C' and set

AA=A—-A, AB=B-B, AC=C-C. (4.1)

13

This notational convention of placing a over a symbol for the corresponding perturbed
quantity and a “A” before a symbol for the change in the quantity will be generalized
to all quantities that depend on A, B, and C. For example, Q(\) = \?A + AB + C is
perturbed to CNQ()\) = A2A + AB + C, as a result, and

—(z"Bz) + [(xHEm)Q - 4($ng)(xHC~’m)] s

Aps(r) = 2(zH Az)

—(z"Bz) + [(z"Bx)* — 4(a:HAx)(a:HCa:)}1/2
2(xH Ax) :

Besides A >~ 0, the other key condition for Q(\) = A2A + AB + C to be hyperbolic is
[¢(2))? = (" Bz)? — 4(2M Az) (2" Cx) > 0, for all 0 # z € C™. (2.2)

We first establish a condition under which (2.2) is weakly* satisfied for all convex combi-
nation (1 —¢)Q(A) +tQ(XN). To this end, we define

o(z) = (2" ABz)? — 4(z" AAz) (2 AC), (4.2)
Y(z) = (2" Bx)(zM ABz) — 2(2M Az) (aM ACT) — 2(2Cz) (aM AAx), (4.3)

and define QNS(:UN) and 1/7(:17)~in the same way, except by swapping the positions of A, B, C
with those of A, B, and C. It can be verified that

Also define
g(t) : = (z1[B 4+ tAB)z)? — 4(z"[A + tAA]z) (a1 [C + tAC)x)
= ¢(2) + 2 (x)t + p(2)t2.
So g(0) =¢(z) and ¢(1) = {(x). Correspondingly,
G(t) : = (2B — tABz)? — 4(zM[A — tAA]z) (2M[C — tAC)z)
= S()® + 20()t + ¢ ()t
Note that g(t) = g(1 —t).
By definition, if A - 0, then Q(A) is hyperbolic if and only if g(0) > 0 for any nonzero

z € C", and if A = 0, then Q()\) is hyperbolic if and only if g(1) > 0 for any nonzero
x e Cm

4By weakly, we mean the strict positivity in (2.2) is given in to nonnegativity.
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Lemma 4.1. Suppose min{g(0),g(1)} > 0. Then g(t) > 0 for all 0 <t <1 and nonzero
x € C" if and only if

min{¢(x), —¢(z), —(x), ¥ (2)* — d(x)s(2)*} <0 for all z # 0. (4.4)
Proof. The condition (4.4) is equivalent to that for any x, at least one of
$(x) <0, Y(z) >0, P(x)=—v() - () >0, P(@)’ - d(x)s(x)* <0

holds. Note that ¢(0) > 0 and g(1) > 0 by assumption. We first prove that (4.4) implies
g(t) > 0 for all 0 < ¢ <1 and for any nonzero = € C™. To this end, we let 0 < ¢ < 1 and
0#xeC™

1. If ¢(x) <0, then g(t) is concave and thus g(t) > (1 —¢)g(0) + tg(1) > 0;
2. If ¢(z) > 0, then

[V
AAJ\

()% + 2¢ ()t + ()t
()2 + 2 (x)t? + p(z)t?
1—%)g(0) + t°g(1)

7

9()

Y
o

3. If ¢(z) > 0, then similarly g(¢) > (1 — t2)g(0) + t2g(1) > 0;

4. Consider the case 9(z)? — ¢(z)s(x)? < 0. Suppose® ¢(x) > 0. Then g(t) is a
nontrivial quadratic function and has at most one zero in R. Going through the
cases either there is no zero or the zero is in (0, 1) or the zero is outside of (0, 1), we
can see g(t) > 0 forall 0 <¢ < 1.

Next for the necessity of (4.4), suppose there were an x # 0 satisfying ¢(z) > 0, 1 (x) <0
“(z) = ¥(x) + d(x) > 0, and $(x)? — $(x)s(x)? > 0. Then

ming(t) = _Y@)? = a)s@)? _

¢(z)

and ming g(¢) is attained at tpi, = —% € (0,1), contradicting the assumption that
g(t) >0for 0 <t <1. O

Given a shift A\g € R, define

Q3 (A) == QA+ o) = XA+ A(2XA + B) +Q(\o) (4.5)
= A2A+ ABy, + Oy, (4.6)

where
o = 2AOA =+ B7 C)\O = Q(Ao) (47)

It can be verified that (i, ) is a quadratic eigenpair of Qx,(\) if and only if (u + Xo, )
is a quadratic eigenpair of Q(N).

®The case ¢(z) < 0 has already been dealt with.

22



Lemma 4.2. Suppose that Q(X) is hyperbolic, and adopt the notations introduced in The-
orem 2.5.

1. If Mo € (A, A]), then diag(—C),, A) = diag(—Q(\o), A) > 0.
2. If Ao € [N}, +00), then Q»,()\) is overdamped, i.e. By, = 0 and Cy, = 0. Moreover,

—(\, + A —2X00)A < By,
(A = 20) (A7 = A0)A = O,

—(A\L A = 2X00)4, (4.8)

=
= (A = 20)(Af — M)A (4.9)

3. If |AY2AAA-Y2||y < 1, then A = 0.

Proof. Ttem 1 is a consequence of Theorem 2.1 and (4.7). For (4.8) of item 2, we have for
any x # 0

xHB,\O:E =220z Az + 2" Bz
xHBx)

xH Az
= xHAgU(2)\0 — [p+(z) + p— (x)])

which, together with (3.4), yields (4.8). For (4.9), we have for any z # 0

=M Az (2)\0 +

Mz = 2"Q(o)r = 2 Ax A — pa(2)]ho — p_ ()]

which, together with (3.4), yields (4.9). For item 3, we notice the smallest eigenvalue of
A"Y2AAY? satisfies

Amin(A7Y2AATY2) =1 4 Apin(A"Y2AAAV2) > 1 — |ATYV2A4A72 |3 > 0

if |A~Y2AAA? 4 < 1. O

4.2 Asymptotical analysis

It is a common technique to perform an asymptotical analysis in numerical analysis for at
least three reasons:

1. it is mathematically sound, provided it is known that the interested quantities are
continuous with respect to what is being perturbed;

2. it is relatively easy because it is a first order analysis, and
3. it is powerful in revealing the intrinsic sensitivity of the interested quantities.

Let (p,x) is a simple quadratic eigenpair of HQEP (1.1) for Q(A). Since HQEP (1.1)
is equivalent to the eigenvalue problem for the regular matrix pencil Zp(\) in (2.5) and
since the eigenvalues of a regular matrix pencil and the eigenvectors associated with simple
eigenvalues are continuous with respect to the entries of the involved matrices [56], Q(\)
has a simple quadratic eigenpair (fi,Z) = (1 + Au, z+ Azx) such that Ay — 0 and Az — 0
as AA, AB, AC — 0. Now suppose that ||AA|, ||AB|, and ||AC|| are sufficiently tiny,
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and so are Ay and [|Az||. Ignoring terms of order 2 or higher and noticing Q(u)z = 0, we
have from Q(u + Ap) (z + Az) =0

Ap[2pA+ Bla + [P AA+ pAB + AC]x + [p*A + pB + C| Az ~ 0, (4.10)

where the “~” means the equation is true after ignoring terms of order 2 or higher. Pre-
multiply (4.10) by 2 and use 21Q(1) = 0 to get

HI2AA AB + AC
Apr =2 1AL+ pADB + AC] (4.11)
a1 [2uA + Bla
HI2AA AB + AC
_ 2 [WAA+ pAB + AC]x (4.12)
s(x)
2
M H H H 1 H
= — - AAxr — -x" ABx — -2 ACx. 4.1
@) x x @) x x @ " ACx (4.13)

where the equality in (4.12) is due to (3.5). There is a clear interpretation of (4.13): the
change Ay is proportional to AA, AB, AC with multiplying factors 1% /s(z)], |u/s(x)],
and 1/[s(z)], respectively. Our following strict bounds reflect this interpretation.

The expression (4.11) is not new and its derivation follows a rather standard technique
(see, e.g., [62]). What is new here is the use of (3.5) to relate its denominator 2™ [2uA+ Bl
to ¢(x), a quantity that determines the hyperbolicity of Q.

4.3 Perturbation bounds in the spectral norm
Throughout the rest of this section, we assume Q(\) and 52()\) are hyperbolic and
|ATY2AA472|, <1 (4.14)

which guarantees A= 0. We will adopt the notations introduced in Theorem 2.5. Our
goal is to bound the norms of

AL =diag(A] — AT, N = AD), AAL =diag(A\] — AT, A, — Ay).

Bounds on norms of the change to A = diag(A_, A) are easily derivable through

|AA]l2 = max [[AAsll2,  [AA]lr = \/IIAA+H% + A4,
[AA] < Qmiax [AAL |-
In this subsection, we will focus on the spectral norm, and leave the case for the

Frobenius norms and more generally unitarily invariant norms to the next subsection.
Our main results of this subsection are summarized in Theorem 4.1.

Theorem 4.1. Let typ € {+,—}, and
|AB|2 [AC]|2

€a = |[ATVZAAATV2)y, e = , €= , (4.15)

‘ | B]l2 T ICl

A = max{[APP[ AP}, ARE. = max{| AP, NP}, (4.16)
Xe = rzn;g{go(x), Q(2)}, xawe = max{ A%, AR} (4.17)
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~

I\S}

o

B

. If AA=AB =0 and
2
X¢
€e < (4.18)
4| All2[|Cl2
then 1
[AAigpll2 < — [|AC]J2. (4.19)
Xs
. If AB=AC =0 and
2
. Xe }
€g <mindl,— s L (4.20)
{ 4| All2[|Cl2
then
X 4y 4.21
AA < A . .
Al < 05— Adls (1.21)
. If AA=AC =0 and
2
ey < - , (4.22)
[Bll2(lI B2 + 24/ [|All2[C1l2)
then el
Xt 2
| Adyplls < 22 B, + 1902 A, (4.23)
Xs Xs
IfAA=AC =0 and
2
[AB|2 < > : (4.24)
12204 + Bll2 + 21/[|A[l2[|Q(X0) 2
where A\ € (—oo, min{ A7, A }] U [max{\}, A}, +o0), then
+ A
Ayl < 20 P Polyapy, (1.25)
Xs
. In general, without assuming two of AA, AB, and AC are zeros, if
2
€q < ymin {1, g} , (4.26a)
4[| All2[|Cl2
X (4:26D)
€ <7y ) 4.26b
IBll2([|Bll2 + 2+/[|Al[2[|C]l2)
2
X¢
P C— (4.26¢)
4[| All2[|Cl2
where
\2
v = S <V2-1, (4.27)
1BI3 + X2 +/(IBI3 + X2 (IBI + 2x2)
then
4
[AAiyplle < m\\cllz [ All2lICll2(ea + €c)® + | BII3(eb + €a)(ep + €c)]
a)Xg
1
+ ————— [Cow) 21442 + xawr |ABlls + |AC|2] . (4.28)
(1 - ea)XC
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All bounds by this theorem are strict. They are consistent with the asymptotic ex-
pression (4.13) rather well after dropping terms of order 2 or higher in ¢4, €, and .. For
example, (4.28) yields

1A Ay llz < X1 (o) 2 AAllz + x| AB2 + | AC 2] (4.29)
The rest of this subsection is devoted for the proof of Theorem 4.1. Later in the next
subsection, we will extend (4.19) to a general unitarily invariant norm.

Each of many expressions below is in its compact form for two. For example, (4.30)
includes two displayed equations: one for Ap, and one for Ap, with all “+” selected as
either “+” or “—” accordingly.

Lemma 4.3. If (4.4) and (4.14) hold, then there exists 0 < £ <1 such that

I HAz
Apy(z) =07 (x,§) ==+ |d3(x, &) — 5 55 (x) (4.30)

zHAx

for any x # 0, where

2(..H H H
55 () = p+(x)* (" AAz) + p+(x) (2" ABx) + x AC$7 (4.31a)
¢(z
s(z)?¢(z) — (z)?
Syl ) = ——— S AD VT (4.31b)
Az Az) [o(2)? + 24 (2)8 + d(2)E?]
¢(z) and Y (z) are defined in (4.2) and (4.3). In addition,
1 oH Az 1
< — < 4.32
1+HA—1/2AAA—1/2H2 = oHAr T 1_HA—1/2AAA—1/2H2a ( )
£12 [\E]2 £ \E
0E ()] < max{[AT]% Ay "HAA]2 + max{|AT], Ay [HIABl2 + [ AC]2. (4.33)

g

Proof. According to how the difference operator A is defined at the beginning of subsec-
tion 4.1, we have

Ac(z) F2HABx &z :F.’EHELE 1
+Api(x) = (2szAx) + (z) 5 A i) + €. (4.34)
The rest of this proof is to calculate ¢; and e3. By Lemma 4.1,
f(t2) = [o(@)? + 20(@)t + o(2)?] (4.35)

is well-defined and differentiable for 0 < ¢ < 1. By the Taylor expansion, there exists
0 < ¢ <1 such that

) = (1) = F(0:) + £1(052) + 5 ()

P(x) | s(x)?p(x) — y(x)?
() 2[f(&2)®

(4.36)



This ¢ depends on z. Now we are ready to calculate e€; and e5. We have

M ABz 1 <w(a:) N s(x)%¢(x) —w(x)Z)

O T o) 2 A @) T 2 Ga)P
~ _a"ABg n (#"'Bz) (2" ABx) B HACT B 2HCx 2H AAx n s(z)2¢(z) — Y(x)?
S ToelAn) T 2@ An(n) | s@) | s(o) aAw T AGHAD) (€ )P
o E(z) - (z"Bx) 2" ABz B HACz B MOz M AAx  ¢(2)%¢(x) — ¥(x)?
- 2(xM Ax) s(z) s(z) () aMAz  4(zMAz)[f(§2)]?
_pi(:r)(xHABx) B HACx B 0z 29 AAx 2 Az (2)2¢(x) — (z)?
s(z) <(z) s(z) Az oMAw 48 Ax)(f (& @)
B pe(z)2(HAAz)  2BCz2HAAz  HAx
=)+ s(x) C(z) 2HAz * a:HAxé?’(x’g)
and
S(z) F 28 Bz (e AAz pi(x)(zHAAx tHAAx
Noticing
oM Cx _dfCx | —aMBx +(x)
¢(x) +px(w) = () 2(zH Ax)
2(xH Az) (28 Cx) F 2" Bag(x) + ¢(z)?
N 2¢(x) (zH Ax)
(x1B2x)? — ¢(2)? F 2(zH Bx)c(x) + 2¢(z)?
N 4¢(x)(zH Ax)
_ [z" Bz F ¢(z)]? _ p+(2)? (M Ax)
4¢(x) (2" Ax) ¢(x)
we have
H Az tHAAx
+Api(z) = 1 + 0 = 65 (x) + mHjxag(x,g) _ [iApi(x)]%
solving which for +Ap () leads to Apy(x) = 6% (x, ). O

Lemma 4.4. Suppose (4.4) and (4.14) hold. Let 5%(3:), 53%(1‘), Sljg(x), and Sfb(x) be
functions satisfying

Fh@) < 6 (2.6) <65 @), FE(e) <55 (2,6) <5 (@) (437)
for all z € C", ¢ € [0, 1], where 6% (x, &) is defined as in Lemma 4.3. Write
Yo = max{ o (@) 0 (@)} i = max{ o (@), ~&f; ()},
o= ma (O 5@ = max G, 35,
Then
| AAL]l2 = max [ANF] < min{rd, i, Vi T (4.38)
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Proof. We only consider the “+” case below; the “—” case is similar. In fact simply

replacing “+” with “—” gives a proof for the “—" case.
By Lemma 4.3,
O () < Apy(z) =67 (2,€) < 0 ().
Let 8; = span{uf,--- ,u;},T; = span{u;,--- ,u}} and similarly define 8; and T;. By the
Courant-Fischer type min-max principles in Theorem 3.2,
; min max p+() o p+(x) = py(u;),
X—‘r p— 1 0 == 0 ey D ~+
; omin | max p+ () g p+ () = py(u7),
AT = i = i = +
P T gaX, | min p(e) = min pi(2) = pi(ui),
A= ma min ji(z) = min jp(x) = po(T).
i codimx)ii—1 O#Exm( ) 0nc, p+(x) = p3(u;")

Therefore,
AP = min max ju(z) < max pu(z
dim X=4 0#£z€X P )_ 0#z€S8; Pl )

< +
< e [p4 (@) +6,(2)]

Iy

< ot
< Jmax py () + s (@)

=\F ot
s

/\j - codigll%):(i—l oggx plz) 2 Ogalcien% pe(@)
> i [ps(0) +5(0)]
> min py() + min G (2)
="+ O;r;ienqi 5t ().

They give (4.39a) below and (4.39b) as well, by switching the roles of @ and Q:

Ogiienm Si(x) < AF =A< Og;aéi 5h (), (4.39a)
min 0 (z) < A7 — A < max 0 (z). (4.39b)
0#z€T; 0#z€S;

It follows from (4.39) that

|AN| < max{ max 4, (z), max Sib(ﬂf)}
0F#2€8; 0#£z€S;

< mi(})({éz_b(x)? S{fb(‘r)} = ’YtJlruv

AXF| <max{ — min 6 (z),— min &f(z
[AN] < { 02re, () 0tncS, ()
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< mp () <5 00} = 5

0#£z€T; 0#£zes;

< maxf =4 (@), 0}, ()} = 3l

|AXNS] gmax{ min 51J]g(x), max 5*}3(:6)}

|ANS| < max{ — min Sﬁ)(l“), max Sjb(x)
0+£zET; 0#£z€S;

< max{ 50, 55, (2)} = 3
This completes the proof of (4.38) for the “+” case. O

Proof of Theorem 4.1. We only prove the perturbation results for A,. The case for A_
can be turned into one for A by considering the pos-type quadratic eigenvalues of Q(—\)
and é(—)\).

For any a > 0,z # 0, we have

€q < = |2 AAz| < azB Az, (4.40a)

2 2

X¢ H s(z)
<O AAx| < a——— 4.40b
< CHALICT, A< gy )
€ < axig = |2 ACz| < ()" (4.40c)
c R .
4/ All2(IC2 4aM Az
2

e < X = |[2%ABz| < a|z"Bz|, (4.40d)

I1Bll2([[Bll2 + 2v/[|All2[ICll2)

where (4.40a) and (4.40b) hold because

2HAAx
zHAx

:cHAl/z(A—l/QAAA—l/Q)Al/%

CHAL2 A1/2, <ATVPAAAT |y =

and (4.40d) holds because the left part tells

s(x)”
|20 Bx| + \/4(xHAz)|zHCOz|

|t ABz| < o

=« <|xHBa;| - \/4($HA.7})|33H01‘|> . (4.41)

For item 1: AA = AB = 0, ¢(z) = ¢(x) = 0,¢(z) = —2(2MAz)(z"ACz) and
(4.14) holds. Under the assumption (4.18), (4.40c) holds with @ = 1. Thus g(1) =
s(z)? + 2¢(x) + ¢(x) > 0, or equivalently the perturbed quadratic polynomial is still
hyperbolic. Note (4.4) holds for ¢(x) = 0. Thus d3(x,£) < 0 and d3(z, &) < 0. We can
take, in (4.37),

HACE ~ ~ HACE
5:]0(1') = —(5;(x) = — @) 5:rb(:c) = —5;(x) = o) (4.42)
to give
AC ~ AC
sl < 25 ) < _114C

= mingo so(z)’ - m'
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Using (4.38), we have |AA |2 < ~f, to get (4.19).

For item 2: AB = AC = 0, ¢(z) = ¢(z) = 0,9(z) = —2(2HCx)(z"AAz). Under
the assumption (4.20), (4.14) holds; (4.40a) and (4.40b) hold with a = 1. Thus g(1) =
s(z)? + 2¢(z) + ¢(x) > 0, or equivalently the perturbed quadratic polynomial is still
hyperbolic. Note (4.4) holds for ¢(z) = 0. Thus d3(z,&) < 0 and d3(x,£) < 0. We can
take, in (4.37),

zH Az 2B Az py(z)?(eHAAz
() = — LA g (@) = AT el AT
xH Az xH Az s(x)
HAQ HA,. 5 2(.H
< ozt Ar o at Az py(z)*(an AAx)
Oub () = 2HAz 2 (@) = xHAx S(x ’
along with (4.32), to give
1 (M)’ A4l (S\ITIaX)QHAAHg

b (2) s 10 (@)] < (1 + e)

< - . -
< 1 — €, mingzos0(z) ming.zo So(x)

Using (4.38), we have ||AAy[l2 < 7, to get (4.21).

For item 3: AA = AC =0, ¢(z) = ¢(z) = (z"Bx)(z"ABx),¢(x) = (z"ABx)? and
(4.14) holds. Under the assumption (4.22), (4.40d) and (4.41) hold with o = 1. (4.41)
tells

\/4(.’/UHA.CIZ)|$HC£L” < |28 Bz| — |28 ABz| < |2M Bz + 2" ABz|.
Thus

9(1) = <(2)* + 2¢(x) + $(2)
= (21 ABz)? + 2(2"ABzx) (" Bx) + (21 Bz)? — 4(2M Az) (M Cx)

> {xHABx + 2Bz — \/4(xHAx)|:1:HC’x|] [xHABa: + 21 Bz + \/4($HA$)’.IHC.CU:|
>0,

or equivalently the perturbed quadratic polynomial is still hyperbolic. (4.40d) tells | (x)| =
|z Bx| > [+ ABx| = ¢(z). Thus (4.4) holds. Notice

S(2)°¢(x) — ¢(2)? = <(2)* (2" ABz)? — [(«" Bz) (2" ABu)]?
= —4(2MAz) (2 C2) (eM ABx)?

to get " " ,
(z"Cx)(z" ABx)
0 xz, = - 3
N VTP
where f(&2) = [¢(x)? + 2¢(2)€ + ¢(x)E?] 2 Since®
min f(&;2) = min{f(0), f(1)} = min{s(z),<(2)}, (4.43)

0<£<1

For the quadratic function h(t) = a(t — ¢)* + b with a > 0, if |c| > 1, i.e., ¢, the minimal point of h(t)
for t € R, is not in the interval (0, 1), then the minimal point of h(t) on [0, 1] must be either 0 or 1. For
the case here, ¢ = ¢(z)/¢(z).
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we can take, in (4.37),

|21 Cx||2MABz|? _p+(ar)(a;HABa:) |z Cx||2" ABx|?

5t (x) = =65 (2) +

min{¢(z),(z)}> s(z) min{¢(z),¢(z)}3
Sy iy @i Cu||«"ABx|* _ py(2)(@"ABz) | |21Ca|2" ABa?
Pun() = =02 () L@ @) P ) min{s(2), 5@}
to give
5] < —ma i ap), 4 192 A

X3

- minx¢0 ) (ZL') e

n
0] < e apf + 1552 Bl
Using (4.38), we have |AA |2 <~ to get (4.23).

For item 4: AA = AC = 0, consider the shifted @,(\). By item 2 of Lemma 4.2,
Q),(\) and é/\o (A) are overdamped for Ay € (—oo, min{ A, AT }] U [max{\;}, A}, +00).
In particular, By, > 0,C), = 0; E,\O = 0, 6’,\0 = 0. Note ¢y, () = ¢(x),5)\(z) = <(x).
Under the assumption (4.24), like” in item 3, |1, (z)| > ¢r,(x). Thus (4.4) for @y, (\)
and @)\0()\) holds. Just as in item 3 (note AB), = AB since AA = 0),

Sho (;r)ngﬁ)\O () — Py, (z)? = —4(xHA:U)(xHC,\Ox)(a:HABaJ)2 <0

which infers 3.5, (2,&) < 0 and thus we can take, in (4.37),

ub — P )\ Xz
Y (l‘) = (;2»\0 (x) — _ + >\0( )((m) AB ),
~5+ ~ - e .,
ub; g (:C) = —(529\0 (x) — _p-‘r,)\o( 2((x) AB )

to give

A A
max; N max;
Oping (@) < =20 JABl2, [0, ()] < ————0— || AB||2.

~ mingo () mingo Go(x)

Using (4.38), we have ||AAy 5|2 < ’Yl—fu‘)\o to get (4.25).
For item 5, under the assumption (4.26), ¢, < v < 1 and (4.40) holds with a = 7.
Then (4.14) holds, and

[v(z)| < |z Bz||zM ABz| + 2(2 Ax)|zM ACZ| + 2|2MCx||zP AAz|
s(@)? | s(x)?

2 T
= [l Bz[* + ¢()?],

lp(z)| < |zMABz|* 4 42" Adz||zP ACZ|

< |z"Bx*y +

"We will use the same symbols as those for @ but with the subscript “\¢” to represent the corresponding
quantities for Qx,.
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2
H 2.2 H ()%

< B AA
|z Bz|“y* + |z x| WAy
< |2 B[’y + ¢ (z)*?

= [Ja" Bz |* + <(2)*]7%,

which infers

9(1) = c(z)* + 24 () + o(x)
> ¢(2)2(1 = 2y —9*) — |2 Bz*(2y +7°)
> (JUHOC)2 [X2(1 =2y —~%) = IBl3(27y ++7)]
H

—

e2)? [x2 = (1BII3 +x2) (27 +9%)]

I

Il
o

or equivalently the perturbed quadratic polynomial is still hyperbolic. By the same rea-
soning we had for items 1, 2 and 3, (4.4) holds and at the same time, we have (4.43). Note
that
s(2)%p(z) — (z)? = —4[($HA.%')(£L‘HAC:L') - (:L‘HC’x)(xHAA:L')]Z
— 4[(z" Az) (2" ABx) — (2" Bz) (2" AAx)] x
(" Cz) (2" ABz) — (2" Bx) (2" ACw)],

and similarly

&(x)2(x) —p(x)? = —4[ - (2" Az) (2" ACz) + (xHé'x)(xHAAx)]Q
— 4 — (2" Az) (" AB2) + (2 Bz) (21 AAz)] x
[ - (2N Cx) (2" ABz) + (xHE:L‘)(xHAC’x)]

Now take

)|
+H Ax (ajHAx) mln{g( ), S(x)}3
A (@)20(x) — ¥()?
Oun(@) C2H Ay 2 (2) (xH Ax) mln{g( ),¢(x)}3

n (4.37). Note
B AAx
2HAx | —

we have
[s(z)?p(x) — P(2)?| < 42" Az)?||Cl3[ec + €a]® + 4(2" Az) || BI3IIC l2[er + €aller + €.

Using (4.38), we have ||AA |2 < v, to get (4.28). O
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4.4 Perturbation bounds in unitarily invariant norms

Our main result of this subsection is Theorems 4.2 and 4.3. The proof of Theorem 4.2
is based on our new Wielandt-Lidskii min-max principles. Since it is rather long, we
postpone it after stating both theorems.

Theorem 4.2. Suppose AA= AB =0 and (4.18) holds, and let

v=07 = A)Amin(4), 7= = A;)Amin(A). (4.44)

Then 1AC]
Ay |y < - ——0_ 4.45
Adsl < - e, (1.45)

where the constant ¢ = 1 if AC is semidefinite and ¢ = 2 in general.

The inequality (4.45) can be considered as an extension of (4.19), but a little bit less
satisfying in that it does not become (4.19) after specializing the unitarily invariant norm
to the spectral norm in two aspects: ¢ is not always 1 and

min¢o(z) >

min () >
which can be a strict inequality. Thus it makes us wonder if the stronger version of (4.45)
upon setting ¢ = 1 always and replacing min{~y,7} by x. holds. But how to settle this
question eludes us for now.

Recall Theorem 2.5. The next theorem is a straightforward application of Theorem A.2,
where || Z||2 and || Z||2 can be bounded using item 5 of Theorem 2.5.

Theorem 4.3. Let & — A\B = Zg()\) and o — \B = fé()\), admitting the eigen-
decomposition in (2.16). Then

1A= Al < 12120202 (17 = i + €18 = B ). (4.46)
where & = max{|Af |, Al [Mhaxl [Amaxl}> and Ao and XS, are defined by (4.16).

The rest of this subsection is devoted to the proof of Theorem 4.2.

Lemma 4.5. Suppose AA = AB =0 and (4.18) holds. Let €1 < ey < --- < g, be the
eigenvalues of AC, and vy and 7 be given by (4.44).

1. Given X € C™** with rank(X) = k, denote the quadratic eigenvalues of X"Q(\)X

by
— — + +
/\1,X < S)‘k,X S)‘LX < S)‘k,Xv

and the quadratic eigenvalues of XHCNZ()\)X by S‘fX arranged in the same way. Then

k k k .
0 _ _ . 0 - ;
B Z max{0, Ei} + En—1+i < Z A)‘Z_X <— E : min{0, —e,} + El, (4.47a)
i=1 v i=1 i=1 !

koo k k
I Y e
i=1 i=1

i=1
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2. Forany 1 <1 <--- <1 <n,

& k k .
B Z max{0, —€1} + ny1-i < Z AN < Z min{0, —e,} + &; (4.482)
~ — K2 - ’ ’
P Y i—1 ’ i=1 v
" min{0, —e,} + & i ‘. max{0, —e1} +¢ j
YORRLLTEITE oy Ay, < Y PRI T I (g 4sh)
] Y i=1 i=1 "

Proof. The assumption (4.18) guarantees that Q(/\) is still hyperbolic. Without loss of gen-
erality, we may assume that X has orthonormal columns; otherwise, we consider VEQ(\)V
instead, where V is from a QR decomposition X = VR of X, VHV = [, and R € CFk*k,
Evidently XHQ(\)X and VHQ(A)V have the same quadratic eigenvalues.

Recall the linearization (2.5) for Q(A). We linearize

Qx(\) := XHQNX = Ax\2 + Bx A+ Cx

in the same way to get

A — A\ By = {_CX 0 ] —)\[BX Ax

0 Ax Ax 0 ] ZJQX()\)'

Next we apply Theorem 2.5 to @x(A) to obtain various associated eigen-decompositions
and denote the corresponding quantities by the same symbols as those for Q(A) but with
the subscript X to indicate them for Qx (\). In particular, we will have

[T + — Jiae(AF 2\t +
Ux = [UL)(:"' 7uk,X]7 A x = dlag()‘17x7)\27xa"' 7)‘k,X)7

where UZ_X are quadratic eigenvectors of Q@x (), sx (qu) =1, and

Sy = [ } . Si%ySx =1L

UxAy x
Also S)I%@/XSX = [} since @X = ABx. Note that Uy € C*** is nonsingular. By Theo-
rems 2.2 and [37, Corollary 2.1],

k

inf  trace(Z"@/xZ) =) My = trace(SXxSx).
ZHg';EZ:Ik race( 'xZ) ; i x = trace(Sx #/x Sx)

Let €1, x < --- < & x be the eigenvalues of ACx = XHACX. Since X has orthonormal
columns, we have ¢; < ¢; x < €,_k+; by the Cauchy interlacing theorem, and thus

k

k k
ZEi < Zé‘i,x < Z€n+1—i-
i=1 i=1

i=1
For the sake of presentation, we will drop the superscript “+” to UTX in the rest of this
proof. We have

k
ZS\TX = inf  trace(Z%N/x2)
-1 ZH B Z=1I,
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< tI’aCe(S)I_}JJ)/(SX> (since S)}}%’A?XSX =1Iy)
= trace(S)P}dXSX) + trace(SL Aa/x Sx)

= Z)\ — trace(UXACx Uy). (4.49)

Let p1 = min{0, —&,} < 0. For any scalar 1 € (0,1), set 72 = 727 = 72(A — A;,) Amin(4),
and

Ex = —uUlUy, Dx = U (U U - 1)Uy,
T3 ACx +pl) O 2k x 2k I 0 2k x 2k
%X—[ 0 EX:|€(C s @X_[O DX:|€(C .

Note that by (2.18a), (2.18e), and (2.24),

n

UXAXUX = ()‘IX )‘I;X)_II = (>‘1+ - )‘_)_II
which infers

ULHUS = (A = A0 Ax = (A = M) Amin(Ax)T = (A — A\) Amin(A)T =1 = 721

n

Thus, Dx > 0, and so Zx = 0. Hence the matrix pencil €x —AZx has 2k finite eigenvalues
v; (it =1,---,2k). By the choice of p, ACx + puI <0 and Ex > 0. Therefore these v; can
be ordered as

v < Sy S0 < vy < S g,

where v; for i = 1,--- , k are the eigenvalues of 7 2(ACx +ul) and v; for i = k+1,---,2k
are the generalized eigenvalues of Exy — ADx. By the Courant-Fischer min-max principle,
we have fori =1,--- |k

B (ACx + pl)x

YT i or;Iéla?eXx T2gHy
1 n . HACKx
== min  max ————
2 BT g 0£zeXx  aHz
1
=3 [n+eix]
> % w+ &
T
1
= ——|nt+e&.
027[ d
By the arbitrary choice of 19 € (0, 1),
v > u+e;
Y

For the matrix Tx := {T(;X ] , we have
TR 9xTx = T?UUx + Dx =1,
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THExTx = 212U (ACK + pI)Ux + Ex = U ACXUx.
Therefore
trace(ULACxUx) = trace(TH€x Tx)

> min trace(Z1%€xZ)
IR Gy Z=1

k
3w
=1

Thus, (4.49) becomes

k k .
S AN < - Z " < z preyomindloed a5
i=1

i=1 v

Think of Q as obtained from perturbing @ and apply (4.50) to get

k k .
I SPTTAPE 1 TUETCE BT
=1 =1

which, combined with (4.50), leads to (4.47a). Apply (4.47a) to Q(—)) and Q(—A) to get
(4.47D).

Now we prove (4.48). With all “sup” being taken over X; C --- C X}, and codim X; =
i; — 1, and all “inf” over z; € X;, X = [z1,...,2g], and rank(X) = k, we have by
Theorem 3.3

k k
ZS\:; = supinfz:\zx
j=1 j=1
koo
< sup inf Z Ny—> min{0, —en} + ¢ (by (4.50))
j=1 i=1 v
b b min{0, —&,} + &;
:supian)\;X—Z .
j=1 i=1 v
b i min{0, —&, } + ¢&;
DIPTEDY ot Tt (4.52)
j=1 i=1 v
Similarly,
o e minf0, (e} + (—enm14)
Z Ay < Z A~ Z 5 : (4.53)
j=1 j=1 i=1
The inequalities in (4.48a) is a consequence of (4.52) and (4.53). Apply (4.48a) to Q(—X)
and Q(—\) to get (4.48b). O
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Lemma 4.6. Suppose AA= AB =0 and (4.18) holds. We have for 1 <j<n

A<M and A7 > A if AC =0, (4.54a)
N+ + N~ -
AT > AT and A7 <\ if AC <0, (4.54b)

Consequently v <~ if AC >0, and~y >y if AC <0.

Proof. The assumption (4.18) guarantees that @(/\) is still hyperbolic. By (3.2), we see

Now use Theorem 3.2 to get (4.54). O

Proof of Theorem 4.2. The assumption (4.18) guarantees that C~2(>\) is still hyperbolic.
As in Lemma 4.5, let €1 < &9 < --- < g, be the eigenvalues of AC.
Consider first the case AC = 0. Then 0 < &1. Also A/\f < 0 for all 7 by Lemma 4.6.
Therefore the leftmost inequality in (4.48a) gives

k

k
STa <Y —8”%1‘i
=1

i=1

for any 1 < i3 < -+ < i < n. As a result of [56, Theorem I1.3.6 and Theorem I1.3.17],
we have

A ui
1AL s < | g” | (4.55)

Similarly, use the rightmost inequality in (4.48b) to get

A ui
a4 < 1550, (4.56)

Now we turn to the case AC < 0. Then ¢, < 0. Also A)\i+ > 0 for all ¢ by Lemma 4.6.
Therefore the rightmost inequality in (4.48a) gives

k k |6|
JF 1
S <y
i=1 i=1 v

for any 1 < i3 < .-+ < i < n. Again as a result of [56, Theorem II1.3.6 and Theo-
rem 11.3.17], we have

AC ui

1A, [y < 18N (4.57)
Similarly, use the leftmost inequality in (4.48b) to get
AC| i

1Ay < 180 (4.58)

The inequalities (4.55) — (4.56) together give (4.45) for the case when AC is semidefinite.
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For the general case when AC' is indefinite, we can decompose AC = AC, — AC_,
where AC4 = 0 and

eig(ACL) = {max{0,¢;}, 1 <i<n}, eig(AC_)={max{0,—¢;}, 1 <i<n}.

In particular, |AC%|[ui < [|AC]|ui- Let C =C—AC_ and Q( ) = A4+ AB+C. We

claim Q( ) is hyperbolic. This is because C = C + ACy — AC_ = C — AC_ = C and
thus for any z # 0

0 < (2"Bx)? — 4(2MAz)(2"'Cx) < (2" Bx)? — 4(2M Az) (2" C),

where the first inequality holds because é(/\) is hyperbolic. Apply what we just proved
to @ and Q to get

H//l\:t _A:I:Hui < HAC—”UI < HACHUI,
Y Y

where /Ti are similarly defined for Q to A4 for Q. Notice C=C+ AC, and apply what
we just proved to @ and @ to get

(4.59)

G| _ IACT

1Az — Asflu < — (4.60)
vy
Finally
. . - AClu
M = Adllat < [As — Aufh + | As — As < 2 HACTw
min{~y, ¥}
as was to be shown. O
4.5 Perturbation bounds in the Frobenius norms
Theorem 4.4. Suppose (4.26) holds and Mo € (A, A7) N (N, A]). Then
12413 < 2(GREIAAIR + 31 4B I} + 3RIACK ). (461)
where
_ N N 2
i = \/ ICxollz + G ll2 + (IA=2Brgllz + A=/ Byg )
=/ A7 2l A2,
xo = V1Al + [ A1),
1
AR 1A
G = 1
2 = - -
etz + e
In particular, if AA =0, then the scalar 2 in (4.61) can be replaced by 1 to give
[AA|E < [ATYBIABE + 2 A7 263 [ MAB + AC 3. (4.62)
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Proof. The assumptions in (4.26) guarantee that é()\) is still hyperbolic. The assumption
Xo € (A, A7) N (A, AT) ensures Cy, = 0 and Cy, = 0. Without loss of generality, we
may assumed that both Q(\) and Z)(A) have already been shifted, or equivalently Ag = 0.
This allows to drop the potential subscript “Ag” to By, C),, etc.

Note that () = & — A& as in (2.6), where # = diag(—C,A) = 0. Thus, the
hyperbolic eigenvalue problem Q()\) is equivalent to the Hermitian eigenvalue problem K

where
0 [_C]l/ZAfl/Q
AV2[LO/2 A1 2pAY2|
By the Hoffman-Wielandt therorem [27, 56],

K=2"aqz?= {

1AA|% < | AK]2 = 2 HA (I-cp2a-12) Hi + HA (a-/2pam12) Hi (4.63)

The rest of the proof is just to bound the two terms in the right-hand side of (4.63). To
this end, we note that

HA ([70]1/2/1—1/2) H [ _ 6]1/2A(A_1/2) n A([70]1/2)A—1/2HF

=
< N[ = CT ol AT ) e + 147211 [ A(1-C1?) |+ (a64)

and similarly
Ja (opear)|, = |ac-crmae s eprann),
< A2 A=) ||+ el || a2 )
Also,

HA (A—1/2BA—1/2)H HE—1/2§A(A_1/2) L AV2ABATY2 4 A(A_l/g)BA_l/QHF

F =
< (1A72B 2 + A7 2B|], ) | A(A™/2) |
+ |AT 2 o l| A2 2| AB . (4.66)

Combine® (4.63) — (4.66) to get

lAAl} < 2 [X%HA(AW)H% +x31ABIE + 3 | A(1-c7?) Hi] e
By [53],
JAAT2) e < GIAAT e
< GUA [N AALE Ao, (4.68)
|a(=cr)| . < e 1acly, (4.69)

where the inequality sign in (4.68) is due to A(A™1) = —A"1AAA~!. Now substitute
(4.68) and (4.69) into (4.67) to yield the desired inequality. O

8 Actually we only use this: (a + b)? < 2(a® + b*) which results in the scalar 2 in (4.67).
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Theorem 4.4 gives a perturbation result for all quadratic eigenvalues of @(\). However,
using a different approach, we can obtain results in the Frobenius for only pos- or neg-type
quadratic eigenvalues of Q(\).

Following [20], we know the matrix equation

AX?+BX+C=0

has two special solutions. One has all pos-type quadratic eigenvalues of Q(\) as its eigen-
values while the other has all neg-type quadratic eigenvalues of Q(\) as its eigenvalues.
We call the first special solution the pos-type solution and the second special solution the
neg-type solution.

Consider @), () and set

By=A"Y2B\ ATY2 0y = ATV20,,A7Y2, (4.70)
Because A_I/QQ)\0 (MA~Y2 = X2] + AB4 + Oy is hyperbolic, the following equation
X2 4 BaX +Ca =0, (4.71)

has the pos- and neg-type solutions. Denote them by R., respectively, in the rest of this
section. Both Ry can be expressed explicitly by the quantities defined in Theorem 2.5. In
fact,

Ry = AY2Us(Ay — NI UL A2, (4.72)
Lemma 4.7. Suppose (4.26) holds and \g > max{\t X}, Let typ € {+,—}. If
n=2X = Af = Ay = [Rigpll2 — [ Riypll2 > 0, (4.73)
then )
| ARy lr < X4§;"2 [ Adlle + 32 (IR ll2 ABxlle + [ ACx [le), (4.74)
where

Xa = [Regplla (1A Byglla + [A™2 By ll2) + [ A7 /2Cg [l + | A2 Ci o,
and x2,(1 are as in Theorem 4.4.

Proof. The assumptions in (4.26) guarantee that Q(A) is still hyperbolic. By (4.8) and
(49),

eig(Ba) € [2X0 — A, — A5 200 — AT — AT, (4.75)
eig(Ca) € [(Ao — A7) (Ao = Af), (Mo = AT) (Ao = AT)]. (4.76)

Subtract fifyp + EAEtyp + éA = 0 from ngp + BaRtyp + Cy =0 to get
(Etyp + EA)ARtyp + (ARtyp)Rtyp = _(ABA)Rtyp — ACuy,
or equivalently

I® (Etyp + By) + R;l;p ® I} vec(ARyyp) = — vec ((ABA) Ry, — AC,), (4.77)
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where vec(-) turns a matrix to a vector by appending the columns of the matrix one after
another with the first column followed by the second column and so on. The equation

(4.77) yields

[(AB4)Riyp — ACallr

_ - -1
|ARgyp | < H [I@ (Riyp + Ba) + Rg;p ®I}
2

(I Riypll2ll ABallr + [ACA]lF)-

~ ~ -1
< H [I ® (Riyp + Ba) + Ry, © I}
2

(4.78)

Choose a 7 < AT 4+ A7 —2X < AF + A — 20 = —1) — HﬁtypHg — || Riypll2 < 0. Then

1 ® Ruyp + 1@ (Ba+7I) + RE © I
< ||Ruypll2 + I1RE N2 + 1Ba + 712
< HRWPHQ + ”RtypHQ + >\T+L + A, =2 —T
<—n—7< -7 =]|T|
from which we infer

-1

'(I ® (Ruyp + Ba) + iy, 1)

2

~ ~ T —1
|l (I@RtypH@(BAMIHRtyp@I_I®I>

-
2
< 7| 7!
1= ‘T’_IHI@)ﬁtyp +I® (§A+TI> +R;I;,p®IH2
. 1
—7— I ® Ryp + I @ (Ba+7I) + RE, ® 1|2
1 1
< - -

ey e

(4.79)

Like (4.66), (4.68) and (4.69), we can obtain the estimates of || AB4l|r and ||AC4||r. Then

(4.74) follows.
Ryyp is diagonalizable by (4.72). By [7, Theorem 3.1], we have
[AAeypllr < | ARgyp|r,

where

K= \//ﬁg(A1/2Utyp)/<;2(g1/2(7typ).

Theorem 4.5. Suppose Ao > max{\t X'} If (4.73) holds, then
rxaCiX3 KX2
[AAtypllr < TQHAAHF = (I Reypll2[| ABx, [[F + [[ACK, [I¥)

where k,m, X4, X2,C1 are as in Lemma 4.7 and (4.81).
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5 Best approximations from a subspace and Rayleigh-Ritz
procedure

Two most important aspects in solving a large scale eigenvalue problem are

1. building subspaces to which the desired eigenvectors (or invariant subspaces) are
close, and

2. seeking “best possible” approximations from the suitably built subspaces.

In this section, we shall address the second aspect for our current problem at hand, i.e.,
seeking “best possible” approximations to a few quadratic eigenvalues of @(\) and their
associated quadratic eigenvectors from a given subspace of C™. We leave the first aspect
to the later sections when we present our computational algorithms.

The concept of “best possible” comes with a quantitative measure as to what constitutes
“best possible”. There may not be such a measure in general. In [47, section 11.4], Parlett
uses three different ways to justify the use of the Rayleigh-Ritz procedure for the symmetric
eigenvalue problem. For the HQEP here, each of the minimization principles in section 3
provides a quantitative measure.

Let Q(\) = M2A 4+ AB + C € C™ ™ be a hyperbolic quadratic matrix polynomial, and
let Y C C" be a subspace of dimension m. We are seeking “best possible” approximations
to a few quadratic eigenvalues of @(\) using Y. Let Y € C™*™ be a basis matrix of Y.

According to (3.7a) which says (upon substituting i =n — j + 1)

)‘:Lr—j+1 = max Ixnel&l p+ (), (3.7a")
dim X=j z7#0
it is natural to approximate )\:7 j+1, given Y cC", by
+ — '
Hin—jp1 7= Tax min py(z), (5.1)
dimX=j z#0

via replacing X C C" in (3.7a’) by X C Y. Any z € X C Y can be written as z = Yy for
some y € C™, and thus

(2) = py (V) = ~("YBYy) + [(y"YIBY y)? - ATy Ay y) (Y Y y))
P+ Py 2(yTYHAY y) .

Combined with (3.7a’) and this expression for p, (), (5.1) implies that uj, ..., i}, are the
m pos-type quadratic eigenvalues of YHQ(\)Y. What this means is that u;r for1 <j<m
provide the best approximations to the m largest )\j, given Y, in the sense of (3.7a). Of

course, some approximations uj ~ AT are more accurate than others.

n—m

Similarly, given Y, ,uj for1<j<m p;révide the best approximations to the m smallest
)\j+ in the sense of (3.7b).

Let pi,...,pn,, are the m neg-type quadratic eigenvalues of YHQ(A)Y. The same
argument shows, given Y, 1y for 1 < 5 < m provide the best approximations to the m
largest )\; in the sense of (3.7¢), and the best approximations to the m smallest )\; in the
sense of (3.7d).
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Algorithm 5.1 Rayleigh-Ritz procedure

Given Y € C™™ which is a basis matrix of Y C C”, this algorithm returns approximations
to k extreme quadratic eigenpairs (of pos- or neg-type) of Q(M\).

1: solve the QEP for YHQ(A)Y to get its quadratic eigenvalues M;E and associated

quadratic eigenvectors y]i
2: return

° (Mf,Yy;t) for 1 < ¢ < k as approximations to (/\;t,u;t) for1 <i<k, or

o (1, YyF) for m —k+1 <i < m as approximations to (A\F,u) forn —k+1 <
1 <n,

depending on what kind of extreme quadratic eigenpairs are desired.

In summary, we have justified that the quadratic eigenvalues of YHQ(A)Y yield the
best approximations to some of the largest or smallest pos- or neg-type quadratic eigen-
values of @Q(A) in certain respective senses. This statement could sound confusing: how
could the same set of values be the best approximations to some of both the largest and
smallest eigenvalues at the same time? But we point out this is not what the statement
is saying. The key to understand the subtlety is not to forget that they provide the best
approximations under the mentioned senses, and being the best approximations (under
a particular sense) does not necessarily imply that the approximates are good, just that
they are the best (under that particular sense). In practice, Y is built to approximate
either the largest or smallest eigenvalues well, but unlikely both.

Theorems 3.3, 3.4, and 3.5, generalizing Amir-Moéz’s min-max principles and the
Wielandt-Lidskii min-max principles, can also be used to justify that the quadratic eigen-
values of YHQ(N)Y are candidates for best approximating the largest or smallest pos- or
neg-type quadratic eigenvalues of @Q(\), too. For example, according to (3.13a) with any
pre-chosen @, we should seek best approximations to )\j' for 1 <i <k by

minimizing ¢(A] X ,)\IJ;X) subject to R(X) C Y and rank(X) = k. (3.13a")

Noticing that any X € C™*k satisfying R(X) € Y and rank(X) = k can be written as
X =YX for some X € C"™** with rank(X) = k, we see that /\+X are pos-type quadratic

eigenvalues of [YX]HQ( )[YX] XH YHQ( )Y X. Varying X subject to R(X) C Y and
rank(X) = k is transferred to varying X € C™** subject to rank(X) = k. Consequently,

v AT ) = mi + o out
m)%n@()\l X 7)\/@,)() H;%n@(ﬂl < s Hoy ), (5.2)

) )

where 7. are pos-type quadratic eigenvalues of XHYHQ(\)Y X. Apply Theorem 3.3 to
Pz

see the right-hand side of (5.2) is ®(u], - ,,u,j), indicating uj for 1 < j < k provide the
best approximations to the k& smallest )\Jr as expected
The same statement can be made about wh ;j as approximations to the largest )\J s My

as approximations to the smallest /\] or as approximations to the largest /\j , using other
min-max principles in Theorems 3.3, 3.4, and 3.5.
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In summary, our discussion so far lead to a Rayleigh-Ritz type procedure detailed in
Algorithm 5.1 to compute the best approximations to the desired quadratic eigenpairs of
Q()), given a pre-built subspace Y.
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6 The steepest descent/ascent method

A common approach to solve a quadratic eigenvalue problem in general, as well as any
polynomial eigenvalue problem, is through linearization which converts the problem into
a linear generalized eigenvalue problem of a matrix pencil [25, 42, 41]. The latter can be
either solved by some iterative methods for a large scale problem or by the QZ algorithm
[2, 44] for a problem of small to modest size (n up to around a few thousands for example).
This approach is usually adopted for QEP without much structure to exploit. For HQEP,
however, it is a different story — there is much to exploit. Most recent development includes
the solvent approach [10, 21, 24, 61] for certain kinds of QEPs among which is HQEP [20].
Numerical evidence indicates that this solvent approach is rather efficient for QEP of small
to modest sizes.

In this paper, we focus on optimization approaches based on various min-max principles
previously established and the new ones established here. They are iterative methods and
intended for solving large scale HQEP.

The equations in (3.8):

Al =minp (o), A = maxp.(x), (3.82)
Al = min p—(z), A, = max p- (@). (3.8b)

naturally suggest using some optimization techniques, including the steepest descent /ascent

or CG-type method, to compute the first or last quadratic eigenpair ()\;t,uf) as in the

case of the standard Hermitian eigenvalue problem [3, 14]. Block variations can also be
devised to simultaneously compute the first or last few quadratic eigenpairs ()\jc, uf) again
as in the case of the standard Hermitian eigenvalue problem [3, 40].

6.1 Gradients

To apply any of optimization techniques, we need to compute the gradients of p4(z). To
this end, we use p(z) for either p;(x) or p_(x). As x is perturbed to = + p, where p
is assumed small in magnitude, p(x + p) is changed to p(z + p) = p(x) + n, where the
magnitude 7 is comparable to ||p||. We have by (3.1)

[o(x) +n)* (z + p)T Az + p) + [p(z) + 1] (z + p)"B(z +p) + (x + p)"Clx +p) =0
which gives, upon noticing f(p(x),x) = 0, that
2p(x) 2™ Az + 2" Baln + pH[p(x)? Az + p(x) Bz + Cx]
+ [p(x)* Az + p(x) Bz + Cz]p + O(|]p||*) = 0

and thus

pp(x)* Az + p(x) Bz + Cx] + [p()* Az + p(x) Bz + Ca]'lp.

== 2p(x) 28 Az + 2H Bz

Therefore the gradient of p(z) at z is

2[p(z)?A + p(z)B + Clx

Vle) = - 2p(x) 2 Az + xH Bx
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or equivalently

2Q(p= (7))

@) , (6.1)

Vpi(z) =7

where we have used (3.5).
It is important to notice that the gradient Vpi (x) is parallel to the residual vector

re(@) = [px(2)?A+ pi(2) B + Oz = Q(px(x))z (6.2)

whose normalized norm is commonly used to determine if the approximate eigenpair
(p+(x), x) meets a pre-set tolerance rtol:

< ()]
o+ (@)l Az|| + |px ()] || Bz|| + [|C|

< rtol. (6.3)

If (6.3) holds for (p4(x),z), then it is accepted as a converged pos-type quadratic eigen-
pairs, and similarly for (p_(z),x). Here which vector norm || - || to use is usually inconse-
quential, but for the sake of convenience. More conservatively, ||Az| in the denominator
should be replaced by ||A||||=||, and likewise for |Bx| and ||Cz|| there. For large sparse
matrices, the use of || Az||, || Bx||, and ||Cz|| is more economical because of their availability.

Beside being easily implementable, the use of (6.3) can also be rationalized by the exist-
ing backward error analysis of approximate eigenpairs for polynomial eigenvalue problems
25, 36, 62].

6.2 The steepest descent/ascent method

Now the steepest descent/ascent method for computing one of )\;t for ¢ € {1,n} can be
readily given. For this purpose, we fix two parameters “typ” and £ with varying ranges as

type {+,-}, C€{l,n} (6.4)

to mean that we are to compute the quadratic eigenpair ()\zy p,uzyp). A key step of the
method is the following line-search problem

topt = argopt peyp(z +1p), (6.5)
teC

where z is the current approximation to uzyp (thus no reason to let z = 0), p is the search
direction, and

argmin, for /=1,
argopt = (6.6)
argmax, for £ =n.

The next approximate quadratic eigenvector is

(6.7)

Jz+toptps if Zopt is finite,
Y P, otherwise.

But the line-search problem (6.5) doesn’t seem to be solvable straightforwardly by simple
calculus as for the standard symmetric eigenvalue problem (see, e.g., [3, 14, 40, 70]), given
the (complicated) expressions for pgyp, in (3.2). Fortunately, the theory we developed in
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Algorithm 6.1 Steepest descent/ascent method

Given an initial approximation xg to uzyp, and a relative tolerance rtol, the algorithm
computes an approximate pair to (/\Zyp, uzyp) with the prescribed rtol.

1: Lo = zo/[|wol|, po = Ptyp($0)> ro = Ttyp(wo);
2: fori=0,1,... do

5. if )l /(2 Azl + |oi] | Bt + |Czil) < rvo1 then

4  BREAK:

5:  else

6: solve QEP for Y;HQ(N\)Y;, where Y; = [z;,7;] to get its quadratic eigenvalues ujﬂ
as in (6.8) and corresponding quadratic eigenvectors y;t;

7: select the next approximate quadratic eigenpair (u,y) = (u;yp, Y}y;yp) according
to the table (6.9);

8: Tiv1 =y/llylls piv1 = 1, Tit1 = rigp(@it1);

9: end if

10: end for

11: return (p;, ;) as an approximate quadratic eigenpair to ()\Zyp, uzyp).

section 5 points us another way to look at it and thus solve it with ease. In fact, the problem
is equivalent to find the best possible approximation within the subspace Y = R([z,p]).
Suppose z and p are linearly independent? and let Y = [z, p]. Solve the 2-by-2 HQEP for
YHQ(MN)Y to get its quadratic eigenvalues

py < py <pf <pg (6.8)

and corresponding quadratic eigenvectors y]i € C?. We then have the following table
for selecting the next approximate quadratic eigenpair, according to the parameter pair

(typ, £).

’ (typ, £) H current approx. ‘ next approx. ‘

(+1) (p1(2), z) (11, Yyp)
(+,n) (p1(2), ) (13, Yy5) (6.9)
(=1 (p—(x),z) (b1, Yyy)
(=n) (p—(x),z) (kg Yyy)

In light of this alternative way to solve (6.5), the resulting steepest descent/ascent method
is summarized in Algorithm 6.1.

Lemma 6.1. For (6.5) - (6.7), piryp(y) = 0.

Proof. If x and p are linearly dependent (the trivial case p = 0 included), than p = ax
and y = Sz for some scalars a and . Thus piyp(y) = pryp(T), Tiyp(y) = Brigp(z), and
Py (y) = aBatlry,(z) = 0 by the definition of peyp(z).

Suppose x and p are linearly independent. If |to,¢| = 0o, then y = p. Thus pHTtyp (y) =
yHrtyp(y) = 0. Consider the case that t,p; is finite. Let ¢ = top¢ + 5. For tiny s, we have

_ 2RE (s[p(y)*Ay + p(y)By + Cy|"'p)
2p(y) y" Ay + yH By

9Otherwise, no improvement is expected by optimizing piyp(z 4 tp) because then piyp (2 +tp) = pryp ()
for all scalar ¢.

+0(s%),

p(y + sp) = p(y)
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where we drop the subscript “typ” to piyp(-) for convenience. Since min, p(y + sp) over
s € C is attained at s = 0, it must hold that [p(y)?Ay + p(y) By + Cy]'p = 0, as was to
be shown. O

6.3 The extended steepest descent/ascent method
In Algorithm 6.1, the search space is spanned by

x;, ri= Q(Pz‘)-"?zw

Thus it is the second order Krylov subspace X2(Q(p;),z;) of Q(p;) on ;. Inspired by
the inverse free Krylov subspace method [18] which seeks to improve the steepest descent
method for the Hermitian generalized eigenvalue problem by extending the search space
to a Krylov subspace, we may improve Algorithm 6.1 in the same way, i.e., using a high
order Krylov subspace

Kim(Q(pi). i) = span{zi, Q(pi)zi, . ... [Q(pi)]" 'z} (6.10)

as the search space. Let Y; be a basis matrix of this Krylov subspace. We then solve!? the
m-by-m HQEP for YHQ(N)Y; to get its quadratic eigenvalues

P S S gy < < <, (6.11)

and corresponding quadratic eigenvectors yji We then have the following table for select-
ing the next approximate quadratic eigenpair, according to the parameter pair (typ,¢).

’ (typ,ﬁ) H current approx. ‘ next approx. ‘

(+’ 1) (p+(.’)31'),.’lli) (Ml ’}/zyf)
( ) ) (p+(xi)7xi) (/’Lmv}/;ym) (6'12)
(=1 (p—(xi), i) (11, Yiy; )
(=n) (p—(xi), i) (K> Yitm)

We summarize the resulting method, called the Extended Steepest Descent/Ascent method,
into Algorithm 6.2.

When m = 2, Algorithm 6.2 reduces to the steepest descent/ascent method given in
Algorithm 6.1.

6.4 Convergence analysis

While our convergent results are stated for all four possible (typ,¢) € {(£,1), (£,n)}, our
proofs will be presented mostly for one (typ, ¢)

(typ,¢) = (+,1), and thus argopt = argmin in (6.6) (6.13)

to save space. Proofs for other (typ, ) can be obtained with minor changes accordingly.
For convenience, in our proofs we will drop the pos-type sign “+” in r4(-), p+(-), and

00ften Y; € C"*™, but there is a possibility that dim X, (Q(p:),z:) < m. When this occurs, Y; will
have fewer columns than m, and the rest of the development is still valid with minor changes. This is rare,
especially in actual computations. For simplicity of presentation, we will assume that Y; has m columns.
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Algorithm 6.2 Extended steepest descent/ascent method

Given an initial approximation zg to uzyp, and a relative tolerance rtol, and the search
space dimension m, the algorithm computes an approximate pair to (/\Zyp, uzyp) with the
prescribed rtol.

1: Lo = zo/||Zoll, po = piyp(T0), To = Tiyp(T0);
2: fori=0,1,... do

3 if |lril|/(lpi* [ Azi]| + |pil || Bzi]| + [|Ci]) < rtol then

1 BREAK;

5:  else

6: compute a basis matrix Y; for the Krylov subspace X,,(Q(p;),z;) in (6.10);

7: solve QEP for YHQ(M\)Y; to get its quadratic eigenvalues uf as in (6.11) and
corresponding quadratic eigenvectors yj[;

8: select the next approximate quadratic eigenpair (u,y) = (,u;-yp,Yy;yp) according
to the table in (6.12);

9: Tit1 = y/lyll, piv1 = 1, Tit1 = Typ(@ig);

10: end if

11: end for

12: return (p;, ;) as an approximate quadratic eigenpair to ()\Zyp, u}ﬂyp).

u;r with an understanding that they are all for the pos-type, even though occasionally, the
sign is still written out at critical places.

By Theorem 2.5, Q(\) has n linearly independent pos-type quadratic eigenvectors
u;r for 1 < 5 < n and n linearly independent neg-type quadratic eigenvectors Uy for
1 < j < n. Define for each (pos/neg-type) quadratic eigenvalue p its corresponding
quadratic eigenspace

U, ={zeC"|Q(n)x =0} = @ span{uP}.

We'll use the angle 6(x;,U,) from z; to an eigenspace U,:

O(z;,U,) == min ———0—
cos (@i U) =  1min, ool

to measure the convergence of z; towards U,. Note 0 < 0(z;, U,) < 7/2.

For the sake of our convergence analysis, it is convenient for us to execute Algo-
rithms 6.1 and 6.2 without their Lines 3 and 4 so that x;, r;, and p; are defined for all
i > 0. But without the two lines, we need to be clear about the case when r; = 0 for
some . When it occurs, K,,,(Q(p;),x;) = span{z;} for any m > 2. For Algorithm 6.2, all
subsequent x;, p;, and r; for j > i are well-defined. In fact, we will have

Pi=pPiy1 =", L =Tiy1 =, T, ="ip1 = =0. (6.14)

But for Algorithm 6.1, all we have to do is to modify its Line 6 to “Y; = «; if r; = 0” and
then x;, pj, and r; for j > i are again well-defined and they again satisfy (6.14).

Theorem 6.1. Let the sequences {p;},{r:},{z:} be produced by Algorithm 6.1/6.2.
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1. Only one of the following two mutually exclusive situations can occur:

(a) For some i, (6.14) holds, and (p;,x;) is a quadratic eigenpair of Q(N).
(b) pi is strictly monotonically decreasing for (typ,¢) € {(£,1)} or strictly mono-

tonically increasing for (typ,£) € {(£,n)}, r; # 0 for all i, and no two x; are
linearly dependent.

2. zllr; =0, rilri =0, 2l'r; 1 = 0 for Algorithm 6.1;
3. zir; =0, Yr, 1 = 0 for Algorithm 6.2;
4. In the case of 1(b),

(a) pi — p € AP, AP as i — oo,
(b) ri #0 for all i but r; — 0 as i — oo,

(c) p is a quadratic eigenvalue of Q(N), and any limit point & of {x;} is a corre-
sponding quadratic eigenvector, i.e., Q(p)z =0,

(d) 6(x;,Us) — 0 as i — oo.

Proof. As we remarked at the beginning of this subsection, we will prove the claims only
for (typ,£) = (+,1).

There are only two possibilities: either r; = 0 for some ¢ or r; # 0 for all ¢. If r; = 0 for
some 4, then p; = p;+1 and x; = x;11 because p(x; + tr;) = p(z;). Consequently 7,11 =0,
and the equations in (6.14) hold. Consider now r; # 0 for all i. Note that r; # 0 implies
Vpi # 0, and so p(x; — sVp;) < p(z;) for some s with sufficiently tiny |s|. This in turn
implies p(x; + tr;) < p(z;) for some ¢ with sufficiently tiny |¢| and thus

Pi+1 = iItlf IO(IL‘i + t’l‘i) < p(iﬂl)

Therefore p; is strictly monotonically decreasing. No two z; are linear dependent because
linear dependent x; and x; produce p; = p;. This proves item 1.

For item 2, x}{ri = .'z:?Q(pl)ar:Z = 0. Since p(x;4+1) = min; p(x; + tr;), by Lemma 6.1,
r?riﬂ = 0. We now prove :z:l-HriH =0. If r; =0, then all r; = 0 for j > ¢ — no proof is
necessary. Consider r; # 0. Then p;11 < p;- Note x;11 is a linear combination of z; and
T;; S0 we write ;11 = oux; + Byr; for some scalar «; and ;. We know ; # 0; otherwise
;11 = o;x; to yield p;+1 = p; which contradicts p;11 < p;. Therefore

pi1 = p(ri+ (ai/Bi)z:) = inf p(r; + tx;).

Apply Lemma 6.1 with x = r; and p = x; to get x?riﬂ =0.
For item 3, again zi'r; = z1Q(p;)z; = 0. Let ;11 = Yiy. Then for each column z of
Y;, we have
piv1 = p(Yiy) = f p(Yiy + t2).

Apply Lemma 6.1 with = Y;y and p = z to get zHr; ;1 = 0. Since z is any column of Y},
we conclude YiH'riH =0.
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Now for item 4(a), since p; is strictly monotonically decreasing and bounded from
below since p; > A], it is convergent and p; — p € [\, \}] because p; = p(z;) € [\, \}]
for all ¢ by Theorem 3.1.

For item 4(b), we have ||r;|| = ||(4p] + Bp; + O)zil < [[AI(XF)? + B A7+ (€
since ||z;|| = 1; so both {r;} and {z;} are bounded sequences. It suffices to show that
any limit point of {r;} is the zero vector. Assume, to the contrary, {r;} has a nonzero
limit point 7, i.e., r;; — 7, where {r;,} is a subsequence of {r;}. Since {z;} is bounded,
it has a convergent subsequence. Without loss of generality, we may assume z;; itself is
convergent and z;, — & as j — oo. We have 712 =0 and ||Z|| = 1 because rgmi]. =0 and
z;, || = 1. Now consider the quadratic eigenvalue problem for

zHQN)z;, zHQ(Mr;.
(N =YHQW Y = | T Ty "l 6.15
Q)= YR = litlg(e,  rliQUVr, (6.15)
_ . . H . _ g _ . . .
where Y;; = [&;;, 7] Since riz;; = 0, rank(Y;;) = 2, and thus Q;;(A) is hyperbolic.
Denote by u;.fk its quadratic eigenvalues. It can be seen that

M S S Hjn SA <A Spjy S pf, <A (6.16)

Then'! )\T < Pij41 < /1;:1- Let

Q) = lim Q;;(A)
j—o0
whose quadratic eigenvalues are denoted by ﬂii. By the continuity of the quadratic eigen-
values with respect to the entries of coefficient matrices of a quadratic polynomial with a
nonsingular leading coefficient matrix, we know Mﬁ — ﬂf as j — 0o, and thus
A< BT <y <A <A <pf <af <AL (6.17)

Notice by (6.16) and (6.17)
N Spymisuly = by <A <p<pf (6.18)

On the other hand, by (6.16), we have

N 0 T 0 FHp }
) = lim Q; (p;;) = lim C = | . H. “
A0) = Jirz @, e) = iy, [rgmj r%Q(pij)mj] [rHr MQ(p)7

which is indefinite because #1'# > 0. But by (6.18) and Theorem 2.1, CA)(ﬁ) <0, a
contradiction. So 7 = 0, as was to be shown.

For item 4(c), since ||z;|]] = 1, {z;} has at least one limit point. Let & be any limit
point of x;, i.e., ;; — &. Take limit at the both sides of Q(p;;)x;; = ry; to get Q(p)T = 0,
ie., (p,2) is a quadratic eigenpair.

For item 4(d), write §; = 6(x;,U;) for convenience and write!? x; = ; cos 0; + ¥, sin 6,
where 1; € Up, 0; € u% (the orthogonal complement of U;), and ||@;||2 = ||?s|]2 = 1. Then

ri = Q(pi)zi = (pi — p) [(pi + p)A + Bt cos 0; + Q(p;) Vi sin 6;. (6.19)
"¥or Algorithm 6.1, Pij+1 = p;-tl.
12Without loss of generality, we may assume || - ||2 is used in the algorithms.
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We claim that Q(p;)?0; sin@; — 0. To see this, we notice
[(pi + p)A+ Bll2 < 2max{[\{ |, NT[} [ All2 + [|B]l2,

r; — 0, and p; — p — 0. Thus Q(p;)0;sind; — 0 by (6.19). The null space of Q(p) is U.
Since Q(p) is Hermitian,

IR(A)vll2 > yllvll2  for any v € Uz,

where v = min |£| taken over all nonzero £ € eig(Q(p)). Therefore ||Q(p)vi]|2 > . Because
pi — p, for sufficiently large i we have ||Q(p;)vi||2 > /2 and thus

1Q(pi)0; sin O;]|2 > (v/2) sin b;,
implying sin §; — 0 which leads to 6; — 0 because 0 < 0; < /2. O

Theorem 6.1 ensures us the global convergence of Algorithm 6.1/6.2, but gives no
indication as how fast the convergence may be. For that, we turn to our next theorem —
Theorem 6.2 — which provides an asymptotic rate of the sequences {p;} generated by the
algorithms. Both theorems are reminiscent of [18, Theorem 3.2] and [18, Theorem 3.4],
respectively. But Theorem 6.2 about the rate of convergence is much more difficult to
prove than [18, Theorem 3.4]. Because of that, we will devote the entire subsection 6.5
for its proof.

We introduce a few new notations: for any x # 0,

a(r) = —x—, b@)=—F— c@)=—5— (6.20)
Also recall @, (M) := QA+ Xo) in (4.5) for a given shift \g. Accordingly,

1By x 2 (2XA + B)x 1O\ x  2HQ(No)x
bo(z) = a:HxO = i , colz) = xHa;O = °, (6.21)

Theorem 6.2. Suppose AP < po < A\JP if £ =1 or AP, < po < AP if £ = n, and let
the sequences {p;},{ri},{z;} be produced by Algorithm 6.2. Given a shift \o > A\, define
B)\O, C)\O by (45)

p

1. As i — oo, p; monotonically converges to p = )\zyp, and x; converges to uzy in
direction, i.e., G(mi,uzyp) — 0.
2. The eigenvalues™® w; of Q(p;) can be ordered as
w1 >0>wy >+ >wy,  if (typ,4) € {(+,1),(—,n)}, or, (6.22a)
w1 <0<wy <+ <wpy Zf (typag) € {(+7n)7 <_7 1)} (622b>

Denote by v1 the eigenvector of Q(p;) associated with its eigenvalue wy. If p; is
sufficiently close to )\Zyp, then

i1 = AFP| < el lpi = AP+ (1= e )emn(v1)lpi = AFPI% + O(lpi — AFPP), (6.23)

13Their dependency upon i is suppressed for clarity.
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where

|g(wi)|

Em = min max , (6.24)
9EPm _1,9(w1)#0 i#1 |9(W1)|
1 JIAll 1 1Byl 1 G le
= ok , o= , 6.25
walate)’ BT Tl Botw) 7€ Tl colvn) (6.25)
b 2. 1/2 o 12 . 1/2
77(1)1) — 37_2/2 + 2( ()('01)) 7-B + Q(Ul)co(’l)l)(TA + TC )’ (626)

§0(Ul)2
and P,,_1, the set of polynomials of degree no higher than m — 1.

3. Denote' by ~ and I' the smallest and largest positive eigenvalue of

{—Q(A% for (typ,€) € {(+,1), (=, )},
QOAIP)  for (typ,€) € {(+,n), (=, 1)}.

If p; is sufficiently close to )\Zyp, then

Pt — AP| < o — ATP| + (1 — 2)enlps — AOP[2 4+ O(lpy — APP),  (6.27)

where
—9 VE+1 m_1+ VE+1 ~(m-1]7 _r (6.28)
€= Jio1 Jio1 , K= ol .
Ly 14l pho@? 1Bl , atweotw) (1AL, (1]l
= [= |3 +2 +4 +
TV ) T @ b)) T @2\ alw) T eolw)
(6.29)
L[, [I4ll2 | 11Bxol3 + 41 AlJ2] O 2
— |3 +2 , 6.30
SV PV atw) T bw)? - da(uiet) (630
and u = uy’® for short.
6.5 Proof of Theorem 6.2
We recall (3.5) to see
s(z) : = [(2"Bx)* - 4(acHAx)(xHCx)]1/2
= +2"[2p+(z) A+ Bz
= 18Q (p (2)2, (6.31)

and ¢o(z) = s(z)/||z||3. For a perturbation E € C™*" which is assumed Hermitian, we
define
Qe(\)=Q\)+E=XNA+\B+C+E. (6.32)

MQ(APP) is singular and, by Theorem 2.1, negative semidefinite if (typ, ¢) € {(+,1), (—,n)} or positive
semidefinite if (typ, £) € {(+,n),(—,1)}.
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When Q£()) is also hyperbolic, the pos- and neg-type Rayleigh quotients, denoted by
pE:+, can be defined for Qg (). Accordingly, we will define g and g9, too. Specifically,

— (2" Bz) + {(a"Bz)? — 4(2M Az) (2P [C + E]a:)}l/2

pi(a) = ST As) . (633)
and
cu(z) : = {(@"Bx)? — 4(a" Az) (2" [C + E2)} (6.342)
= +2"[2pp,1 (v) A + Bz,
cpolz) =L () (6.34b)

&[5
Lemma 6.2. Suppose Qg (X) in (6.32) is also hyperbolic.

1. Let (\{,uf) and (u,v]") be the smallest quadratic eigenpair'® with the pos-type of
Q(\) and Qg (N), respectively. Then

Amnin (F Amax (&
AwinlB) oyt pip < dmaxB), (6.35)
so(uy) se0(vy)

2. Let (N5, wl) and (u,h,v;b) be the largest quadratic eigenpair with the pos-type of Q(\)

ni»n

and Qg (), respectively. Then

)\min (E) )\max (E)
vy < AE ot < Dt (6.36)

so(vn seo(ui)

3. Let (A ,uy) and (puy,v;) be the smallest quadratic eigenpair with the neg-type of
Q(\) and Qg (\), respectively. Then

)\min(E) <
So(vy) —

Amax (F)

AT < b))
! ! gE;O(ul)

(6.37)

4. Let (N, ,u,,) and (v, ) be the largest quadratic eigenpair with the neg-type of Q(\)
and Qg()\), respectively. Then

)\min E — — )\max E
AminlB) o < 2mexlB) (6.39)
So (Un ) SE:0 (Un )
Proof. As in the proof of Lemma 4.4, we have
Nf = m;EmPE;Jr( z) < pE; +(u1 ) < P+(U1 )+ (5ub(u1 )= )‘+ + 5ub(u1 )
which gives
pt =X <R, A - ut <8500, (639

5By the smallest (largest) pos/neg-type quadratic eigenpair, we mean the quadratic eigenvalue in ques-
tion is the smallest (largest) of that given type. The same naming is used for the usual linear eigenpair,
too.
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where the second inequality is actually obtained from the first one there by switching the
roles of @(\) and Qg (\). Now use (4.42) in the proof of Theorem 4.1 for AA= AB =0
and AC = F to get item 1.

Similarly, we have

A= mg?XPJr( x) > pi(vy) > pea (o) = 0, () = it — 0, (v7))
which gives
= A <R (o), AL =t <65 (wh), (6.40)

where the second inequality is actually obtained from switching the roles of Q(\) and
Qr(\). Now use (4.42) in the proof of Theorem 4.1 for AA = AB =0 and AC = E to
get item 2.

Items 3 and 4 are corollaries of items 2 and 1 applied to Q@(—\) and Qg (—A). O

Lemma 6.3. Qg (\) with E = —ol is hyperbolic if

O )";fAmi“(A). (6.41)

Proof. For any vector x # 0, we have
(8 Bz)? — 4(aB Az) (21 [C — o1]z) = (2 Bx)? — 4(2M Az) (28 Cx) + 40 (2 Ax) (2P )
= [p+ (@) — p—(2)* (2" Az)? + 4o (2" Az) (2"2)

0T Ax

> (M Az) (M) |\ T = \) + 4o

> (z HA:U)($ x) [()\Jr )\_)2)\min(A) + 40]
0,

V

where the last inequality holds because of (6.41). O

So sg and <, are well-defined for any E = —o[ satisfying (6.41). To emphasize such
special £ = —ol, we introduce notations

So(2) =<e(), <xo(v) :=cpo(v) for E=—0ol. (6.42)

For p € (A\PP, A7), it follows from Theorem 2.1 that the largest eigenvalue, denoted
by wi, of Q(p) is nonnegative, and thus this ¢ = w; automatically satisfies (6.41). But
the smallest eigenvalue, denoted also by w1, of Q(p) is non-positive and (6.41) may fail for
o = w; unless |wy] is sufficiently tiny.

Lemma 6.4. Given /\iyp <p < ADP et (w1,v1) be the largest eigenpair Q(p) if (typ,¥) €
{(+,1),(=,n)} or the smallest eigenpair Q(p) if (typ,¢) € {(+,n),(—,1)}. If (6.41) holds
with o = w1, then for the four different (typ,{)

N

%( —AD) < m<p AT for (typ, £) = (+,1), (6.43a)
+ J—

W A= p) = go((;l) <Ay —p for (typ,£) = (+,n), (6.43b)



<w1;0(u_) - —w1 _ e )

Tvl;@—m S o SPON for(m ) = (=), (6.43¢)
§0(u;) — w1 . —m

m()\n -p) Sm <A\, —p for (typ,£) = (—,n). (6.43d)

; typ
Moreover, for p sufficiently close to \;™",

ﬁ =p— A +0(p—XT?) for (typ.0) = (+,1), (6.44a)
g;(ji) = A7 —p+O(N] —pl”) for (typ, ) = (+.7), (6.44D)
co_(jll) =p= A +0(p = A[*) for (typ,0) = (=, 1), (6.44c)

ﬁ =X\, —p+O(\, —pl*) for (typ, €) = (=, n). (6.44d)

Proof. Consider the case (typ, ) = (+,1). We have w; > 0 and [Q(p) — w1]] v1 = 0. Since
wy is the largest eigenvalue of Q(p), Q(p) —w1l < 0. Thus, (p,v1) is the smallest pos-type
quadratic eigenpair of @ () with ¥ = —w;/. By Lemma 6.2,

w1

<p-\ <
ses0(v1) =P =

§0(U1)

which gives (6.43a). To prove (6.44a), we denote by a(t) the largest eigenvalue of Q(t)
near t = A\{. Then a(\]) = 0 and a(p) = w;. Note that

Qlp)vy =wiv1 = U?Q(p)vl = wlvflful = v{{[Q(p) —wil]v; =0,

i.e., p is a Rayleigh quotient of @ () with F = —w;I. Therefore

Hey Hpy/
v Q' (p)v1 _ vy Q(p)ur
O/(p): ! H ) =-1 g :<w1;0(vl)a

where the first equality is due to [56, p.183], and the third equality due to (6.31). Finally
a(AT) = a(p) + swr0(v1)(AT — p) + O(|A] — p|?) which leads to (6.44a). O

Remark 6.1. There is a different proof of Lemma 6.4, without using Lemma 6.2. For
the case (typ,?) = (+,1), (p,v1) is the smallest pos-type quadratic eigenpair of Qg(\) =
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M A+ AB + C — wyI. By direct calculations'©,

ui'Q(p)ur uj Auy

w1 = w1 — S + CO(ul)(p - )‘—f) + H (p - AT)27 (6453‘)
Uy UL Uy U1
vHQ (A v vH Avy
= LR e — A — AT, a2 (6.45D)
(O] U1 1
Along with Q(p) — w1l <0, Q(\]) = 0, they yield
w1 w1
—— _<p-A<
Swpso(v1) — p 1= go(w)
and then ()
st + 1 +
————(p— A7) < <p—A
cnlon P A Sy SN

which is (6.43a).

While Lemmas 6.5 and 6.6 are stated for any g € P,,,—1 with the specified conditions
satisfied, in their eventual application, it will be taken to be the one that minimizes .

Lemma 6.5. Given x € C", assign p+ = p+(z) and pg+ = p+(9(Q(p+))x) for any
g € Pr1. Suppose A\YP < piyp < AP if £ =1 or AP < piyp, < AP if £ =n, and let the
eigenvalues of Q(piyp) be w; for 1 < j < n which can be arranged as

wr>0>wy > >w, if (typ7£) € {(+7 1)a (—,TL)}, or,
w <0<wr <~ <w, if (typ,E) € {(+7n)7 (_7 1)}

Denote by v1 the eigenvector of Q(piyp) associated with its eigenvalue wy. Then for a
g € Pp—1 such that g(wi) # 0 and

€4 i= Max l9(ws)l <1, (6.46)
i#1 |g(wr)|
we have
2 |wr |

|pgstyp — Aﬁypl < |ptyp — Aﬁypl - h(eg,w1), (6.47)

‘ptyp - pg;typ’| a(vy) |ptyp - pg;typ" a(vr)

1n fact,
ur Aui(p = A)? + s(u)(p = AY) = ui' A [p° = 20A7 + (\)?] + (AT wd’ Aur + wy' Bua ) (p — AT)
= p2u11{Au1 + pquBul — (Af)zu{lAul — )\fulfBul
— Qo) — u' QO Jus
= Q(p)u,
v Avi(p — AT)? =y (V1) (p — AT) = vi' Avr [p* — 2007 + (AT)?] — (2pv1' Avy + vi' Bu)(p — AY)
= (ANl Avy + A of Buy — p*off Avy — pol Buy
= 0' QA )1 — v1'Q(p)vr
=01 QA )v1 — wivt vy,

They lead to the equations in (6.45) right away.
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where typ’ is the opposite type of typ, and

1—¢2 1 ||A
h(eg,wl):l— J TA=7H ||2

. (6.48)
(1 + €g|w1\1/27'i‘/2)

Proof. Consider the case (typ,f) = (+,1), and write p = p;. Without loss of generality,
we may assume ||vy||2 = 1. Let the eigenvalue decomposition of Q(p) be

Q(p) = VZVH? V= [1)17' o 71)%]7 Y= dia‘g(wb' o 7wn)7

where wy > 0> wy > -+ > w, and VEV =T, Set
&1 0
p =Vl — %, By — & — o) = %
&n &n
Then
0=2"Q(p)z = 2" X% = wi & + ) wil&l*. (6.49)

i#1
Note that for any vector z, zHQ(N\)z = M Az [\ — p4 (2)][A — p—(2)]. Substitute A\ = p and
z=9(Q(p))x to get

a1 9Q00)"Q0)e(@)a
Po = A =P A T g(Q(p) HAg(Q(p))
1 iy yg(X)i
P — Pg;— @Hg( )HA( )

=p— A — (6.50)

where A = VHAV and Pg = Pg:+- We need to estimate the right-hand side of (6.50). We
have

#Mg(2)12g(2)d = wilg(wn) P& + Y wilg(wi) 16
i#1
> wilg(wn) P& + e2lglw) ) wil&l?
iz

= wilg(wn) |61 — 2lg(wr) Pwil& > (by (6.49))

= (1 —eDwilg(wi) &), (6.51)
#Mg(2) M Ag(D)2 = |lg(2)2(1%

= [lg(w)érer + g(X) a5

r 2
< [lgtn)l el leill 5 + 19(2)211 5]
_ 2
< [lg(n)l €] llexll 3 + eglg()l 32l 5]
r 1/272
< [latnl 6l lealls + lgten (ARl ) ] (6.52)
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= |g(w1) [*|&1 v} Avy

2
A 1/2
14¢, <°"1 | ”2> ] , (6.53)

—wy v}l Avy

where the inequality sign at (6.52) holds because

A . T wiléi]?
821 < 1Alallds 3 = [VEAV2 3l < Al =2 ——
i#1

by (6.49). Thus, from (6.50), (6.51), and (6.53),

w1
= [Alla— &l

2
w1 1-— Eg
ps— N <p—) - (6.54)
! ! ! (p — pg;—)v Avy w Al /2 ?
L+ &g —wsy U{IAvl
which gives (6.47) for the case (typ,?) = (+,1). O

Lemma 6.6. Under the conditions of Lemma 6.5, we have

1—¢2
wp— AP < A2 LTS oy Y P2 4 O, 6.55
barn = NP1 S se oo (3 2a) el 0D, (659)
provided
eglwr[V2max{r}* (v} <1, da(vy)wr| < qo(v1)?, (6.56)

where T4, T, and T¢ are defined in (6.25), and

_ bo0?ry® + 2a(i)eo(vr)(ry + 78°) (657
¢ =4+ 6cgwy > + dedwrrp + 3wt P, (6.58)

and the shift A\g > N} in defining bo(-) and co(-) in (6.21). Alternatively,

1/2 :
’Pg;typ - /\Eyp‘ < €§’Ptyp - )\Zyp‘ + (1 B 5527)(37',4/ + 2X1)59’Ptyp B )‘zyp‘S/Q + O(’Ptyp B )‘Zyp’2)7
(6.59)
provided
gy — AP < max { 001 : . (6.60)
N ) 4a(v1)” so(v1)e2 max{ra, 2x3}

Proof. Consider the case (typ,f) = (+,1), and write p = p;. Without loss of generality,
we may assume |lvy|l2 = 1. Write 25 = g(Q(p))z, and

tM:wi/ZTJt[/Z for M = A, B,C,
a=a(vy), b=0b(v1), e=c(v1),

bQ = bo(vl), Cy = CQ(Ul).
By Lemma 6.5, p; < p (see (6.54)) and

Pg — )\_1'_ < g + 01 + d2 + I3, (6.61)
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where

0<dy=p— A — ——=0(lp— M ]*) = O(w}), (6.62)
gwl;o(vl)
51— w1 _ w1
P o) (pg — pg)a’
w1 w1
52 == - )
(pg — Pgi-)a  (p—pg-)a
w1
03 = ———h(ey,wi).
(0= py a0V

The rest of the proof is mainly to estimate 41, d2, and d3.
For 65, we have

0<g, 1 p—py _w p—A
a (pg—pgi—)(p—Pg-) ~ a (Pg— pg—) (P — Pg;-)

where we have used (6.44a).
Consider 6;. If 4aw; < b® — 4ac which holds for sufficiently tiny w1, then

=0 (w}), (6.63)

1 1 1 [,
(V1) Vb2 —da(c—wy) Vb2 —dac b? — 4ac

w1+ O(wd)|. (6.64)

By item 2 of Lemma 4.2, any shift \g > A7 makes @,,()\) overdamped, i.e., By, > 0 and
Cy, = 0. It can be verified that

b2 — dacy = b* — 4ac = [¢(v1)]*.

We get, similarly to (6.53),

a |g(w1)\2]§1| (I —=2e4t4) < x A:cg <a \g(wl)]2|§1\2(1 + €gtA)2,
bolg(w1)*1&1*(1 — 2e4tB) < 2} Bryzg< bolg(wr) *[61]* (1 + g4t ),
colg(wi)*[é1)* (1 — 2e4tc) < $H0A0$g< colg(wi)P[é1)* (1 + egte)?.

Note that p; — Ao (recalling p, is the shorthand for py.1) and pg,— — Ao are two distinct
roots of xgHAafg)\2 + ng)\Oxg)\ + :ch)\Oxg =0in A. So

1 ngxg
(Pg —Pg—)a 4 \/(:BEB,\O%)? — 4zl Az y) (21O 2g)
1—2e4tp

\/b 1 +e4tp)* —dacy(l — 2e4ta)(1 — 2e4tc)
- 1—2¢e4tn

\/bg — dacy + 4e, (b5t B + 2acot 4 + 2acotc) + 2¢2(3b5tT — Sacotatc) + 4e3byt; + elbity
_ 1 —2e4tn

\/(b% — daco) (1 + de xaw)”” + 2e2xow1) + 4e3b3tY, + ebgty,

1

= 1)27(1 — Qegw%/%'i/ ) |1 — 25gX1w1/ + 53(6)& —X2)wy + - (6.65)

V' b§ — 4acy

60



1
= Vb iac 1- 259(7',4/ + X1)W%/2 +ea(6xF — x2 + 4TA/ X1)w1 + O(w 3/2) ) (6.66)
where
b%T}B/Q + 2acy (7 2 1/2) 3b3T — 8acy 1}1/2 1/2
X1 = y X2 = .
b2 — 4ac b2 — 4ac

In obtaining (6.65), we need!” C59X1W1/ < 1, where ( =4+ 6e4tp + 4€2t2 + 63t3 Using
(6.66), we have for d;

w1 w1
Swi;0(v1) (pg - Pg;f)a'

w 2a
— 1 [1 — wi + O(w?)

01 =

b~ dac ~dac
w
- \/ﬁ {1 — 24(7y* 4 x1)wy " + €2(6x3 — X2 + 47y Px1)wr + O(w)?)
1/2 3/2
2
_ gg(T4 "+ x1)w +O0(u). (6.67)
b? — dac

Now we turn to d3. If 424 < 1, then

h(gg,w1) =1 — (1 —€2) (1 +e4ta)>
=1—(1—el)(1 —egta+ 2t — 3oty +--)
:62+( 53)( — 2¢2 tA—i-"-)
=cl+eg(l—e)ta+ O (t%)

=2+ 55(1— 2wy’ 2 + O (w1),
h(eg,w1) =1—(1— ag) (1+tagy) >

>1-(1-¢)

:5320.

Therefore
w1
(p = pg:-)a
W32 112
w1€ —1—59(1—59) Ty )
= + O (w7) . 6.68
(p— Pg;—) (1) ( )

Y"For the expansion in (6.65), it is needed that

53 = h(ag,wl)

436263 bt
459)(10-’1/ + 25qX20J1 + % g—(il:c + b2g—04zc < 1.

However,

Sb 4b
2‘L:QXQWI + b2 Zaf + b2 04ai < 2523')0'[‘3 +4EgbOtB +Egb0tB _ EgtB (6+4€ ; +€2t2)
de 1/2 - 4e b3 ts T4 9B 9" B/
gX1Wy 9%
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We have finished estimating d; for ¢ = 0,1,2,3. Now, combine (6.61), (6.62), (6.63),
(6.67), and (6.68) to get

/2 1/2
2e5(ry” + x1)wi? | wigh +25(1 - 2wy "7
_)\"r < g\'A 4 g g +0 2
Py L= b2 — 4ac (p—pg—)a 1)
:ioﬂ—k 27 1/2+X1) (1_E)A/ 3/2+0( )
(P —pg—) Vb2 —4dac  (p—pg—)a

which, along with

1 1 1) 1 1/2 1/2
= e 1-2 + + O(wr),
(p—pg-)a  (pg—pg-)a w1 Vb2 —dac [ o7 X ] (1)

yield (6.55). Use (6.64) to see

1 1 2a
= 1+ 5——w + 0w} ]
(V1) Swro(v1) [ b2 — dac ! (wr)
substituting which and (6.44a) into (6.55) to get (6.59). O

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Ttem 1 is a direct consequence of item 4 of Theorem 6.1.

Item 2 is a consequence of Lemma 6.6 upon letting g be the minimizer that gives the
minimal e, and using |pi+1 — A\;'P| < |pg — AP

For item 3, again let g be the minimizer that gives the minimal &,,. As i — oo in
item 2, we have w; — 0, wy — 7, and vy — uzyp in direction, and thus

e G0l + 2a(n)eo(v)(7)* + 7)
lim n(vy) = hm 37,7 +2 3 =n
i—00 §0(?}1)

as given by (6.29). Now let

2t — ( 1+ k& —
g(t)zym_1< W”+w2>/9 (— +'f>, p=2T0
— w9 11—k Wp, — W1

where 7,1 (t) is the (m—1)st Chebyshev polynomial of the first kind. Then [34, section 2]

—\ m—1 —\ —(m—1
em <5 < max [g(t)] =2 <1+\/E> —l—(l—i_\/E)

1—Vk& 1—Vk

which goes to € as ¢ — oo because &~ — k. O
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7 Preconditioned steepest descent/ascent method

7.1 Preconditioning

We will explain the idea of preconditioning for computing ()\f, uf) only, via two different
points of view. The same argument can be made for other extreme pos- and neg-quadratic
eigenpairs.

It is well-known that when the contours of the objective function near its optimum
are extremely elongated, at each step of the conventional steepest descent/ascent method,
following the search direction which is the opposite of the gradient gets closer to the
optimum on the line for a very short while and then starts to get away because the
direction doesn’t point “towards the optimum?”, resulting in a long zigzag path of a large
number of steps. The ideal search direction p is therefore the one such that with its starting
point at z, p points to the optimum, i.e., the optimum is on the line {x +tp : t € C}.
Specifically, expand z as a linear combination of uj

n n
_ I N — ut
T = E ajul =roquy +v, v = E oju; . (7.1)
J=1 J=2

Then the ideal search direction is
p=aul + pv

for some scalar @ and 3 # 0 such that 15 — o # 0 (otherwise p = z). Of course, this is
impractical because we don’t know u] and v. But we can construct one that is close to
it. One such p is

p=[Q()] i (2) = [Q(0)] ' Q(p+ )z,

where p, = p, (x) and!® o is some shift near )\f but not equal to p4. Let us analyze this
p. By (2.17a), we have

Qo)™ Q(p4) = Up(ol-Ay) " (UTAUL) oI -A-) N py I-A)UR AU, (p T-A1)UL,
Suppose now that both ¢ and p, are near /\1". Then
(oI —A ) Yp I —A)=T+(pp —o)(ocl —A_) '~ 1T

Therefore [Q(c)]7'Q(p+) ~ Uy (ol — Ay) Ypirl — AL)UL', and thus

n )\+ _
P = 1RO e = Y gl = (7.2)
Jj=1 J

Now if AT < py < AJ and if the gap AJ — A is reasonably modest, then
i =1 forj>1

to give a p = ozu;r + v, resulting in fast convergence. This rough but intuitive analysis
suggests that K = [Q(c)]~! with a suitably chosen shift o can be used to serve as a

18WWe reasonably assume also o # )\;-' for all j, too.
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good preconditioner to improve the steepest descent/ascent method — Algorithm 6.1 by
simply modifying Y; = [z;,7;] at Line 6 there to Y; = [z;, Kr;]. We caution the reader that
implementing Kr; is amount to solving a linear system. This is usually done approximately
by, e.g., some iterative methods such as the linear conjugate gradient method, MINRES
[11, 17, 19].

The second view point is similar to the one proposed by Golub and Ye [18] for the
generalized linear eigenvalue problem. Theorem 6.2 reveals that the rates of convergence
for Algorithms 6.1 and 6.2 depend on the distribution of the eigenvalues w; of Q(p;), not
the quadratic eigenvalues of of Q(A). In particular, if all wy = -+ = wy, then €, = 0 for
m > 2 and thus

piv1 — AL = 0(lpi — A %),

suggesting quadratic convergence. Such an extreme case, though highly welcome, is un-
likely to happen in practice, but it gives us an idea that if somehow we could transform
an eigenvalue problem towards such an extreme case, the transformed problem would be
easier to solve. Specifically we should seek equivalent transformations that change the
eigenvalues of Q(p;) as much as possible to,

one isolated eigenvalue wy, and the rest w; (2 < j < n) tightly clustered, (7.3)

but leave the quadratic eigenvalues of Q(\) unchanged.

We would like to equivalently transform the QEP for Q()\) to for L~'Q(N)L~H by
some nonsingular L (whose inverse or any linear system with L is easy to solve) so that
the eigenvalues of L™1Q(p;)L~ ! distribute more or less like (7.3). Then apply one step
of Algorithm 6.1 or 6.2 to the pencil L~'Q(\)L~H to find the next approximation p;1.
The process repeats, i.e., find a new L to transform the problem and apply one step of
Algorithm 6.1 or 6.2 to the transformed problem.

Such an L may be constructed using the LD L decomposition of Q(p;) [17, p.139] if
the decomposition exists: Q(p;) = LDLY, where L is lower triangular and D = diag(=+1).
Then L™'Q(p;) L~ M = D has the ideal eigenvalue distribution that gives ¢,, = 0 for any
m > 2. Unfortunately, this simple solution is impractical in practice for the following
reasons:

1. The decomposition may not exist at all. In theory, the decomposition exists if all
the leading principle submatrices of Q(p;) are nonsingular.

2. If the decomposition does exist, it may not be numerically stable to compute, espe-
cially when p; comes closer and closer to )\f.

3. The sparsity in Q(p;) is most likely destroyed, leaving L significantly denser than
Q(p;). This makes all ensuing computations much more expensive.

A more practical solution is, however, through an incomplete LD LY factorization (see [51,
Chapter 10]), to get

)

where “~” includes not only the usual “approximately equal”, but also the case when
Q(p;) — LDLY is approximately a low rank matrix, and D = diag(+1). Such an L
changes from one step of the algorithm to another. In practice, often we may use one
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fixed preconditioner for all or a number of consecutive iterative steps. Using a constant
preconditioner is certainly not optimal: it likely doesn’t give the best rate of convergence
per step and thus increases the number of total iterative steps but it may reduce overall
cost because it saves work in preconditioner constructions and thus reduces cost per step.
The basic idea of using a step-independent preconditioner is to find a o that is close to
)\f, and perform an incomplete LDLY decomposition:

Q(o) ~ LDLH

and transform Q()\) accordingly before applying Algorithm 6.1 or 6.2. Now the rate of
convergence is determined by the eigenvalues of

L7Q(p) L™ = L7'Q(o) L™ + (pi = o) L7'Q (o)L + O(lpi — o)

which would have a better spectral distribution so long as the last two terms is small
relative to L71Q(p;)L~". When A\, < ¢ < A{, —Q(¢) = 0 and the incomplete LDL!
factorization becomes incomplete Cholesky factorization.

7.2 Preconditioned steepest descent/ascent method

We have insisted so far about applying Algorithm 6.1 or 6.2 straightforwardly to the
transformed problem. There is another way, perhaps, better: only symbolically applying
Algorithm 6.1 or 6.2 to the transformed problem as a derivation tool for a preconditioned
method that always projects the original pencil Q(\) directly every step. The only differ-
ence is now the projecting subspaces are preconditioned. Again we will explain it for the
case of computing the first pos-type quadratic eigenpair (AT, uf)

Suppose Q(\) is transformed to @()\) := L7'Q(N\)L~ . Consider a typical step of
Algorithm 6.2 applied to @()\) For the purpose of distinguishing notational symbols, we
will put hats on all those for CA)()\) The typical step of Algorithm 6.2 on CAQ is

compute the smallest pos-type quadratic eigenvalue p and corresponding
quadratic eigenvector © of ZHQ(\)Z, where Z € C™ ™ is a basis matrix (7.4)

~
A~

of Krylov subspace K, (Q(p),Z).

~

Notice [Q(i))r:i: =t [(LLH)*lQ(Z))}j (L~ H2) to see

L. %m<@(ﬁ),.’i) - jcm(KQ(ﬁ)vx)7

where £ = L™ and K = (LLM)~!. So Z = L~ 17 is a basis matrix of Krylov subspace
Km(KQ(p),x). Since also

ZMQNZ = (L1 2)"Q)(L~12),
p=p+(&) = p+(x) = p,
the typical step (7.4) can be reformulated equivalently to

compute the smallest pos-type quadratic eigenvalue p and corresponding
quadratic eigenvector v of ZHQ(N)Z, where Z € C™*™ is a basis matrix (7.5)
of Krylov subspace X,,( KQ(p),z), where K = (LL")~1.
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Algorithm 7.1 Preconditioned extended steepest descent/ascent method

Given an initial approximation zg to uzyp , and a relative tolerance rtol, and the search
space dimension m, the algorithm computes an approximate pair to (/\Zyp, uzyp) with the
prescribed rtol.

1: Lo = zo/||Zoll, po = piyp(T0), To = Tiyp(T0);
2: fori=0,1,... do

3 if lrill/(|pi*[[ Azil| + |pi] || Bzl + [|Ci]|) < rtol then

1 BREAK;

5:  else

6: construct a preconditioner Kj;

7: compute a basis matrix Y; for the Krylov subspace X,,(K;Q(p;),x;);

8: solve HQEP for YHQ(M)Y; to get its quadratic eigenvalues ,u;.t as in (6.11) and
quadratic eigenvectors yj-c;

9: select the next approximate quadratic eigenpair (u,y) = (,u;-yp,Yy;yp) according
to the table in (6.12);

10: zi1 = y/|yll, piv1 = s Tiv1 = regp(@ig1);

11:  end if

12: end for

13: return (p;,x;) as an approximate quadratic eigenpair to ()\Zyp, u}iyp).

We are now ready to state a version of the preconditioned extended steepest descent/ascent
method. To make it be inclusive, in Algorithm 7.1 we use K; to denote the preconditioner
at the ¢th iterative step. Once again, they may all be the same or vary from one iterative
step to another. Although the derivation of this algorithm was for the preconditioners
obtained from the second view point above, its final form includes the preconditioners
from the first view point.

7.3 Convergence analysis

If K; = 0, the ith iterative step of Algorithm 7.1 is just one step of the extended steepest
descent/ascent method applied to Kil/ 2Q(/\)Kl-l/ %2 Therefore Theorem 6.2 implies the
following theorem for Algorithm 7.1.
Theorem 7.1. Suppose AP < pg < A\JP if £ =1 or AP, < pg < AP if € = n, and let
the sequences {p;},{r:},{x;} be produced by Algorithm 7.1. Suppose K; = 0.
1. As i — oo, p; monotonically converges to p = )\Zyp, and x; converges to uzyp m
direction, i.e., Q(wi,uzyp) — 0.

2. The eigenvalues'® w; of K;Q(p;) can be ordered as

w>0>wy > 2wy if (typaé) € {(+? 1)7 (_7n)}; or, (763“)
w <0<wy <+ <wy if (typ,f) € {(+7n)7 (_7 1>} (76b)

9Their dependency upon i is suppressed for clarity.
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If p; is sufficiently close to )\;yp, then
pic1 — AP < e2lpi — NP+ 0(€m|Pz‘ — NP2+ g — /\Eyp|2>, (7.7)

where ey, is defined as in (6.24).

3. Denote®® by v and I' the smallest and largest positive eigenvalue of

{—m@(Azyp) for (typ, £) € {(+,1), (—,n)},
KQ\P)  for (typ,0) € {(+,n), (-, 1)}.

If p; is sufficiently close to )\zyp, then
piv1 = AP < i = NP+ 0<€\Pz‘ — NP 4 1pi - /\Zyp\Q), (7.8)

where € is defined as in (6.28).

There is a convergence rate estimate, essentially due to Samokish [52, 1958], for the
preconditioned steepest descent/ascent method in the case of the standard Hermitian
eigenvalue problem. The reader is referred to [29, 46] for detail. Theorem 7.2 below is an
extension of Samokish’s result for our case.

Theorem 7.2. Suppose K > 0. Let ¢ € {1,n} and typ,typ’ € {+,—} such that typ and
typ’ are opposite, and denote by v and I' the smallest and largest positive eigenvalue of

{—KQ(AE“’) for (typ.£) € {(+,1), (= n)},
KQ(\{®)  for (typ,€) € {(+,n), (- 1)},
and
2 r k—1
ity L e s |
Let argopt be as given in (6.6), and

topt = arg(()cpt Pryp( + K1y (), Y= + topt Krgp(z),
te

- {x +7Kry(z) for (typ,f) € {(+,1),(—,n)},
x—1Kry(x) for (typ,?) € {(+,n),(—,1)}.

S

We have
‘ptyp(y) - )\Zyp| < |ptyp(z) - )\Zyp|

| e/ — prypr ()] + VT 6y
TN = g (2)] 17 (VT8 +3)

‘ptyp (:L') - )\Zyp|7

(7.9)

2Tt is worth emphasizing that K;Q(\;"®) is singular and, by Theorem 2.1, KJ/QQ(/\?'I’)K'}/2 is negative

i

semidefinite if (typ,¢) € {(+,1),(—,n)} and positive semidefinite if (typ,¢) € {(+,n), (—,1)}.
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provided T (\/fég + (5%) < 1, where

01 =/ |ptyp(x) — )‘Zyp‘ ||K1/2{A[Ptyp(z) + )‘Zyp] + B}A71/2H27
5 = [ IIKV2AK 2] |peyp () — ATP] - IABP — pyy (2]

s = I AV2E (Alpryp () + AP] + BYA-121]3 oy () — A7)

Proof. We will prove the case: (typ,¢) = (+,1) only. The other cases can be handled in
the same way.

Note z = 2 + 7Kry(2) = © + TKQ(p+(z)) z. We have A\] < pi(y) < p4(2) and thus
p+(y) — AT < pi(2) — AT, So it remains to show that p;(z) — A] is no bigger than the
right-hand side of (7.9).

Let M = —Q(A]") = 0. For any vector w, we have

Jw|3; = —w"QAw
= [p4(w) = XTI = p—(w)]|wl%, (7.10)
I+ 7KQD)]wllar = |[[I — 7K M]w||ar
< ellwl|ar. (7.11)

Write

2= [+ 7KQ\)lz — TK[Q(\]) — Q(p+(2))]=
= [[ + 7TEQ(\))z + 7lp4(2) — A]K[A(p1(2) + A]) + Bla.

Without loss of generality, we may assume ||z||4 = 1. We have

l2llar = o+ (=) = XN = p- )] 1zlas by (7.10)
zllar < I+ 7KQUelar + 7l () — MK TA(ps (@) + Af) + Blalls
< ellallar + Tl () = MWVT [[A(p (2) + A}) + Blallx

< e/l (@) - AN — ()]
T o (2) = MIVT K V2[A(pa () + AF) + BIA™2]

= |:€ A —p_(2) + T\/f51:| \/p+(x) = AT, (7.12)
l2lla > llzlla — 7l Kry ()]
=1 7| Kri ()]l
IKr (@)l = IKQU )z — KIRIN) — Q(p- (x))]al
< IKQU )l + oy () — AT IK[A(ps (2) + A]) + Blalla
< \JIEVZARVZ], 2]
+ [+ (2) = MUAV2K[A(py (2) + ) + BIA 2|y
= VT'dy + 62, (7.13)
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Finally use

o 12]12, 12113,
P A R GRS I — o] 1~ Tl @l

and (7.12) and (7.13) to complete the proof. O
Similarly, we have the following result for Algorithm 7.1.

Theorem 7.3. Suppose K = 0. Let £ € {1,n} and typ,typ’ € {+,—} such that typ and
typ’ are opposite, and let v and I" be the ones in Theorem 7.2, and

=) T et

Let argopt be as given in (6.6), and

Jopt =  argopt  peyp(9(KQ(peyp(x))x),
gEPm_1,9(0)=1

Y = Jopt(KQ(ptyp(z))7,
z = §(KQ(ptyp(z))7,

g(t)zfm_1<2t_ F+7>/y ( 1+/<;>

—14erttot Cpat™ !

where

since §(0) = 1, and Fp,—1(t) is the (m — 1)st Chebyshev polynomial of the first kind. We
have

oty (1) — A1 < lpyp(2) — APP
< ] e/ NP — oty ()] + 1y lptypl) — AP
T A = prypr (2| 1= 1| peyp (@) = A7)
X peyp () = PP, (7.14)
provided
m— 1—1
Z il - [ K [Aps (@) + AT+ Bl Y IKQOAN 57 IKQ(p+ ()|
— ) j=0
‘Ptyp(l’) - /\Zyp|.

Proof. We will prove the case: (typ,f) = (+,1) only. The other cases can be handled in
the same way.

We have A\] < pi(y) < pi(2) and thus py(y) — A\ < pi(2) — A, So it suffices to
show that p4(z) — )\T is no bigger than the right-hand side of (7.14).
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Let M = —Q(A]") = 0. For any vector w, we have

lwli = —w"QA)w
= [p(w) = A1 = p—(w)][[w]f, (7.15)
119(=KQX))wllar < nax l9(o) wllar = el|wllar- (7.16)
Write .
z2=9(-KQW\ )z — Y (-1)'a{[KQX)) — [KQ(p1(x))]' }.
i=1
Note that

I
—

KQU)I' — [KQ(p+ () = Y {IKQUN I IKQ(p (1))

J

Il
=)

~ [KQU)™ [KQ(p () }

I
_

= Y IKQU )T KQN!) — KQ(p+(2)] [KQ(p+ ().

J

Il
o

Therefore

IEQMN) = [KQ(p+(2))]'l2 < &I KQ(A]) — KQ(p+(2))]2
< &ilp+(2) = ADIE[Aps(2) + A{] + Bl

where & = Z;;B IKQIIH |57 HIKQ(py (2))]l. Without loss of generality, we may
assume ||z||4 = 1. We have

I2llar = /o4 (=) = MIN = p- )] Izlas by (7.15)
I2llar < ellellar + nlps (@) — A7)

= (2 =@+ o) =T ) et = a7, (7.17)

m—1
lzlla = llza = Y @l KQNT — [KQ(p+ ()] ll2]l 2 4

=1
> 1-n(p (@) = X, (7.18)

where n = 371 |ei|& || K [Apy () + AT] + B|l2. Finally use

12113
z) = A = 5
p+(z) = A AT = p—(2)]lI=114

and (7.17) and (7.18) to complete the proof. O
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8 Block preconditioned steepest descent/ascent method

The convergence of any of the previous steepest descent/ascent methods can be very slow
if )\f =~ )\ét or )\f;l =~ )\ff. This is reflected by w; = wsy in Theorem 6.2 and 7.1. Often
in practice, there are needs to compute the first few extreme quadratic eigenpairs, not
just the first one. For that purpose, block variations of the methods become particularly
attractive for at least the following reasons:

1. they can simultaneously compute the first k extreme quadratic eigenpairs ()\j[, u]i),
2. they run more efficiently on modern computer architecture because more computa-

tions can be organized into the matrix-matrix multiplication type;

3. they have better rates of convergence to the desired eigenpairs and save overall cost
by using a block size that is slightly bigger than the number of asked eigenpairs.

In summary, the benefits of using a block variation are similar to those of using the
simultaneous subspace iteration vs. the power method [55].
In what follows, we will explain a block steepest descent/ascent method for computing

the first few ()\;r, uj) The same reasoning applies to other extreme quadratic eigenpairs.

Any block variation starts with a given Xy € C"*™ with rank(Xp) = ny, instead of
just one vector g € C™ previously for the single-vector steepest descent type methods.
Here either the jth column of X is already an approximation to uj or the subspace R(X)

is a good approximation to the subspace spanned by u;r for 1 < j < my or the canonical

angles from R([u, ..., u]]) to R(Xo) are nontrivial, where k < n, is the number of desired
eigenpairs. In the latter two cases, a preprocessing is needed to turn the case into the first
case:

1. solve the HQEP X(I){Q()\)Xg to get its pos-type quadratic eigenpairs (potj, y;r),
2. reset Xo := Xo[yy, .-, 4]

So we will assume henceforth the jth column of the given X is an approximation to uj'

Now consider generalizing the steepest descent method to a block version. Its typical ¢th
iterative step may well look like the following. Suppose we have already computed

nxn
Xi = [Ti1,Ti2, . . . Tign,) € CV

whose jth column z;,; approximates uj and

2 = diag(p;), Pl - Py
whose jth diagonal entry p;-fj = p4(x;;;) approximates )\j. Define the residual matrix
R;, = [T'—i-(-%'i;l)y 7’+($Z‘;2), R ,T‘_;_(.%'imb)] = A,X“Ql2 + BX;0; + CX;.
The next set of approximations are computed as follows:

1. compute a basis matrix Z of R([X;, R;]) by, e.g., MGS;
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2. solve the QEP ZUQ()\)Z to get its pos-type quadratic eigenpairs (pal.j,y;-r), and
let 'Qi+1 = diag(p;ti-l;l’p;-lﬂ’ T 7p;t|—l;nb);

3. set Xz'—l—l = Z[yi’—, cee ’y;tb]'

In the same way as we explained before, this block steepest descent method can be
improved in two directions — extending the search space is one and incorporating precon-
ditioners is the other.

Note that r4(x;;) = Q(pl'-tj):ci;j and thus

R([Xi, Ri]) = > R([zi5, Q(p;})wisi])

J=1

= Z 5(:2(Q(p2_j)7 xi;j)'

Jj=1

So it is natural to extend the search space, R([Xy, Ry]) through extending each Krylov
subspace ﬂ(g(Q(ij),x&j) to a high order one, and of course different Krylov subspaces
can be extended to different orders. For simplicity, we will extend each to the mth order.
The new extended search subspace now is

ZK (), wisj)- (8.1)

Define the linear operator
R X € C™™ — Zi(X) = AX2? + BX(2; + CX € C™™,
Then the subspace in (8.1) can be compactly written as
K (%;, X;) = span{X;, Zi(X,),.... 2" 1 (X,)}, (8.2)

where %{ (+) is understood as successively applying the operator %; j times, e.g., #?(X) =
Xi(%#i(X)).

As to incorporate suitable preconditioners, in light of our extensive discussions in
subsection 7.1, the search subspace should be modified to

ZK Ki;jQ(pi5), wizj), (8.3)

where Kj;; are the preconditioners, one for each approximate eigenpair (pjfj7 xi,) for 1 <
J < ny in the 7th iterative step. As before, Kj.; can be constructed in one of the following
two ways:

e K;; is an approximate inverse of Q(i):rj) for some Z’Z;Lj different from pj;'j, ideally
closer to )\;' than to any other quadratic eigenvalue of @(\). But this requirement

on f)jj is impractical because the quadratic eigenvalue )\j of Q(\) is unknown. A
compromise would be to make i)z—'tj closer but not equal to p;fj than to any other p;rj.
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Algorithm 8.1 Block preconditioned extended steepest descent/ascent method

Given an initial approximation Xy € C™*™ with rank(Xy) = ns, and an integer m > 2,
the algorithm computes approximate quadratic eigenpairs to ()\;-yp, u;yp) for j € J, where
J ={1 < j < np} for computing the few smallest quadratic eigenpairs of the given type
or {n —np +1 < j < n} for computing the few largest quadratic eigenpairs of the given
type.

1: solve the HQEP X}'Q()\) Xy to get its quadratic eigenpairs (pgfjr-), y;-yp);
: Xo = Xg[yiyp, . ,y;?;p], J= {1 <7 <mp};
: fori=0,1,...do
construct preconditioners K;,; for j € J ;
compute a basis matrix Z of the subspace

> KnlKi Qo). wig), (8.4)

jel

and let ny be its dimension and J = {1 < j < np} for computing the few smallest
quadratic eigenpairs of the given type or {nz —npy+1 < j < nz} for computing the
few largest quadratic eigenpairs of the given type;

6: compute the n; quadratic eigenpairs of ZHQ())Z: (pgﬁ; j,y;yp) for j € J and let

241 = diag(. .. ,pgf’l;j, ...) whose diagonal entries are those for j € J;

Xit1 = ZW, where W = ..., y;yp, ...] whose columns are those for j € I;
: end for

9: return approximate quadratic eigenpairs to ()\;yp,u;.yp) for j € J.

* 3

e Perform an incomplete L DL factorization (see [51, Chapter 10]) Q(pj]) ~ Li;jDi;ngja
where “~x” includes not only the usual “aproximately equal”, but also the case when
Q(ﬁjj) — L,-;jDi;jLEj is approximately a low rank matrix, and D;; = diag(%1).

Finally set K;.; = Li;jLEj.

Algorithm 8.1 is the general framework of a Block Preconditioned Extended Steepest
Descent method (BPeSD) which embeds four methods into one:

1. Block Steepest Descent method: m = 2 and all preconditioners K;,; = I;
2. Block Preconditioned Steepest Descent method: m = 2 and nontrivial Kj.;;
3. Block Extended Steepest Descent method: m > 2 and all preconditioners K;,; = I;

4. Block Preconditioned Extended Steepest Descent method: m > 2 and nontrivial
Ki;j-

There are three important implementation issues to worry about in turning this general
framework into a piece of working code.
1. In (8.3), a different preconditioner is used for each and every approximate eigenpair
(p;rj,:ci;j) for 1 < j < my. While, conceivably, doing so will speed up convergence for
each approximate eigenpair because each preconditioner can be constructed to make that
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approximate eigenpair converge faster, but the cost in constructing these preconditioners
may likely be too heavy to bear. A more practical approach would be to use one precondi-
tioner K; for all K;;; aiming at speeding up the convergence of (p:,rl, x;:1) (or the first few
approximate quadratic eigenpairs for tightly clustered quadratic ei’genvalues). Once it (or
the first few in the case of a tightly cluster) is determined to be sufficiently accurate, the
converged eigenpairs are locked up and deflated and a new preconditioner is computed to
aim at the next non-converged eigenpairs, and the process continues.

2. Consider implementing Line 5, i.e., generating a basis matrix for the subspace (8.4).
In the most general case, Z can be gotten by packing the basis matrices of all

Km(Ki;jQ(Pf;j),xe;j) for 1 <j<my

together. There could be two problems with this: 1) such Z could be ill-conditioned, i.e.,
the columns of Z may not be sufficiently numerically linearly independent, and 2) the
arithmetic operations in building a basis for each JCm(Ki;jQ(p;rj), xj;;) are mostly matrix-
vector multiplications, straying from one of the purposes: performing most arithmetic
operations through matrix-matrix multiplications in order to achieve high performance
on modern computers. To address these two problems, we may do a tradeoff by using
K;.; = K, for all j. This may likely degrade the effectiveness of the preconditioner per step
in terms of rates of convergence for all approximate eigenpairs (p;-tj, xi;;) but may achieve
overall gain in using less time because then the code will run much faster in matrix-matrix
operations, not to mention the saving in constructing just one preconditioner K; instead
of ny, different preconditioners Kj.;. To simplify our discussion below, we will drop the
subscript 4 for readability. Since Kj;,; = K for all j, (8.4) is the same as

K (KR, X) = span{ X, KZ(X),...,[KZ™ 1 (X)}, (8.5)

where [KZ)’(-) is understood as successively applying the operator K% j times, e.g.,
[KZ)*(X) = K%((K%Z(X)). A basis matrix

Z=1[21,2s,..., 7]

can be computed by the following block Arnoldi-like process.

1. Z1T = X (MGS);
2: for i =2 to m do
3 Y =K(AZi 12>+ BZ;12+CZ;i_4);

4: forj=1toi—1do

5: T=Z1Y;Y =Y — ZT;
6 end for

7 zZ; =Y (MGS);

8: end for

There is a possibility that at Line 7 Y is numerically not of full column rank. If it happens,
it poses no difficulty at all. In running MGS on Y’s columns, anytime if a column is deemed
linearly dependent on previous columns, that column should be deleted, along with the
corresponding pj+ from (2 to shrink its size by 1 as well. At the completion of MGS, Z;
will have fewer columns than Y and the size of {2 is shrunk accordingly. Finally, at the
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end, the columns of Z are orthonormal, ie., ZHZ = T (of apt size) which may fail to
an unacceptably level due to roundoff; so some form of re-orthogonalization should be
incorporated.
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Algorithm 9.1 Preconditioned conjugate gradient method

Given an initial approximation 2o to u,’®, a (positive definite) preconditioner K, and a

relative tolerance rtol, the algorithm computes an approximate pair to ()\Zyp, uzyp) with
the prescribed rtol.

1 o = xo/||Zoll2, , Po = Ptyp(X0), To = Ttyp(Z0), Po = —KT0;
2: fori=0,1,... do

5 if lralla/ (i )| Azl + |pi| |1 Bl + | Czi]) < rtol then
1 BREAK;
5:  else
6: solve the HQEP for YIQ()\)Y;, where Y; = [z;,p;] to get its quadratic eigenvalues
uf as in (6.8) and quadratic eigenvectors y]j-c;
T: select the next approximate quadratic eigenpair (u, Y;v) according to the table
(6.9);
8: compute o = topt as in (9.2) and then y as in (6.7) with = x; and p = p;;
9: zir1 =y/|yll2
10: set pit1 = Pryp(Tit1), Tit1 = Tiyp(Tit1), Pit1 = —Kriv1 + Bipi, where B; is
commonly given by either one of
: i Krig ri g K(rign— 1)
either f; = KT, or f; = KT, : (9.1)
11:  end if
12: end for
13: return (p;,z;) as an approximate eigenpair to (A\}'?, u}"?).

9 Conjugate gradient method

Again because of the equations in (3.8), the nonlinear CG type method [45, 59] and
its variations are natural candidates for computing the first or last quadratic eigenpair
()\]i,uj[), and their block variations can also be devised to simultaneously compute the
first or last few quadratic eigenpairs ()\Ji,u;t) Since much of the machinery including
gradients and preconditioning has already been built up, what remain are more or less
simple adaptations of CG type methods [35] for the generalized Hermitian eigenvalue

problem to the current case.

9.1 Preconditioned conjugate gradient method

The single-vector CG type methods heavily rely on the line-search problem (6.5) — (6.7)
which was solved by projecting the original nxn HQEP for Q()\) to a 2x2 HQEP YHQ(\)Y
without actually computing the optimal parameter ¢,p; and thus the next approximation
y as in (6.7) for the steepest descent/ascent method and its variations. The outcome of
it is that the computed next approximation is a (complex) scalar multiply of y in (6.7).
This is good enough for the steepest descent/ascent method but not for the CG method
for which y in (6.7) needs to be computed. We now show how this y can be recovered
from the approximation given in the table (6.9). Let (i, Y) is selected according to the
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Algorithm 9.2 Locally optimal block preconditioned extended conjugate gradient method

Given an initial approximation Xy € C™*™ with rank(Xy) = np, and an integer m >
2, the algorithm computes approximate eigenpairs to ()\;yp typ) for j € J, where J =
{1 < j < ny} for computing the few smallest quadratic eigenpalrs of the given type or
{n—np+1<j <n} for computing the few largest quadratic eigenpairs of the given type.

1: solve the HQEP X}'Q()\) Xy to get its quadratic eigenpairs (pgyjp, y;yp),

2 Xo=Xoly?®, ...y, Xo1 =0, ={1<j <mp}

3: fori:O,l,...d R

4:  construct preconditioners Kj;.; for j € J;

5:  compute a basis matrix Z of the subspace
> KK Qpisg), i) + R(Xi), (93)
jGJ

and let ny be its dimension and J = {1 < j < np} for computing the few smallest
quadratic eigenpairs of the given type or {nz —ny+1 < j < nz} for computing the
few largest quadratic eigenpairs of the given type;

6: compute the n; quadratic eigenpairs of ZHQ(\)Z: (p?fi j,y;yp) forA j € J and let
241 = diag(. .. ,pg_pl j»+--) whose diagonal entries are those for j € J;

Xit1=2ZW, where W = ..., y;yp, ...] whose columns are those for j € I;
: end for

return approximate quadratic eigenpairs to ()\;yp typ) for j € J.

© %

table, and write v = [v1,5|T and § = Yv = v1x + vop. Thus
topt = v2/11 if 11 # 0, and oo otherwise. (9.2)

With this, set y as in (6.7).
Our discussions on selecting a good preconditioner in subsection 7.1 should be followed.

Algorithm 9.1 presents the framework for the single-vector preconditioned conjugate gra-
dient method for Q ().

9.2 Locally optimal block preconditioned extended conjugate gradient
method

When it comes to eigenvalue computations by CG type methods, CG’s locally optimal
variations [48, 60] combined with preconditioning and blocking are more preferable than
the usual single-vector CG method as in Algorithm 9.1 [3, 28, 35]. In Algorithm 9.2,
we present a framework of the so-called Locally Optimal Block Preconditioned Extended
Conjugate Gradient Method (LOBPeCG) whose different implementation choice gives rise
to a list of CG-type methods which we will elaborate.

The three important implementation issues we discussed for Algorithm 8.1 (Block
Preconditioned Extended Steepest Descent method) after its introduction essentially apply
here, except some changes are needed in the computation of Z at Line 5 here.
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First X;_1 can be replaced by something else. Specifically, we modify Lines 2, 6, and
8 of Algorithm 9.2 to

2 Xo=XoW,and Yo =0, ={1<j<mp};
5: compute a basis matrix Z of the subspace

D Kn(KijQ(piy), wisj) + R(Ya), (9.4)
jel

such that R(Z(. 1.n,)) = R(X:i). Let nz be its dimension and J={1<j<m) for
computing the few smallest quadratic eigenpairs of the given type or
{nz —np +1 < j < nz} for computing the few largest quadratic eigenpairs
of the given type;

7: Xiy1 = ZW, where W = [...,y;yp,...] whose columns are those for j € J,
Yit1 = 2yt 1:0mt 1)) Wing+1:(m+1ng.2)

Next we will compute a basis matrix for the subspace (9.3) or (9.4). For better performance
(by using more matrix-matrix multiplications), we will assume Kj;; = K; for all j for
simplification. Dropping the subscript i for readability, we see (9.4) is the same as

Kn(KZ,X) +R(Y) = span{ X, KZ(X),...,[KZ™ 1 (X)} + R(Y). (9.5)

We will first compute a basis matrix [Z1, Za, . . ., Zp,| for K,,,(KZ, X ) by the Block Arnoldi-
like process outlined at the end of section 8. In particular, R(Z;) = R(X). Then orthog-
onalize Y against [Z1,Za, ..., Zp) to get Zpy1 satisfying ZH  Z,,11 = I. Finally take
Z =12, 2, ..., Zys1]-

So far, we have not mentioned any convergence properties of these CG type methods.
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10 Numerical examples

In this section, we will present a couple of examples to demonstrate the numerical behavior
of Algorithm 9.2 which often performs much better than the steepest descent/ascent type
methods. In presenting numerical results, we will use the normalized residuals

Qi) xil|2
(JAl 3 + (| Bl 2|l + 1CN10)] il 2

to show the convergent progress for approximations (u;, ;) to a particular quadratic eigen-
pair vs. the iteration index, where using the matrix ¢; operator norms ||Al1, ||B|1, and
||C|l1 is more for computational convenience than anything else as any other norm would
serve the same purpose just as well.

Example 10.1. This is the problem Wiresawl in the collection [5]. It is actually a
gyroscopic QEP arising in the vibration analysis of a wiresaw [68], but leads to an HQEP.
Here

1 2 1 2
A= §In, C= (V2)7T diag(1%,22,...,n?%),
4ij
Vo—0>5, if 7 + | 1S Odd,
B = L(bij) with bij = 12 — j2 J
0, otherwise,

where + = v/—1 is the imaginary unit, v is a real nonnegative parameter corresponding
to the speed of the wire. For 0 < v < 1, Q(0) = C is negative definite, and thus
Q(\) = A2A + AB + C is hyperbolic by Theorem 2.1. Moreover

A <O<)\j for all 4, 5.

Therefore it is rather natural to use K = —C~! as a preconditioner when it comes to
compute the few smallest )\j or largest A;, or for testing purpose some approximations
to C~! such as those corresponding to the linear conjugate gradient methods.

We ran Algorithm 9.2 with n, = 10, m = 2 and random Xy = randn(n,n;) on this
example for n = 1,000 and v = 0.8 without or with preconditioners

. 103)1-1 T n
B { [Q(£6.0-10°)]~F, for largest A; or smallest A7, (10.1)

Q) !=-C1, for smallest /\j or largest A},

implemented through the linear conjugate gradient method with stopping criteria of nor-
malized residuals for the involved linear systems being no bigger than 10~! or reaching
the maximum number CG steps which is 10. We have already explained the use of —C !
or its approximations as possible precondtioners. After running Algorithm 9.2 without
any preconditioner, we noticed that all A;C lie in (—6.0 - 10%,6.0 - 103) which leads to the
use of [Q(£6.0-10%)]7! in (10.1).

Figure 10.1 plots the residual history for computing the largest or smallest few /\,Li,
where the left column is for without any preconditioner while the right column is for
with the preconditioners as given in (10.1). We notice without using any preconditioner
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Figure 10.1: Residual history for

20
iteration i

running Algorithm 9.2 on Example 10.1
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for A} and A3 for A and A}

normalize residual
.
o,
normalize residual

2| \ 4
10 \ 1074
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o 5 10 15 20 25 30 35 40 o 2 4 6 8 10 12 14
iteration i iteration i

Figure 10.2: Residual history for running Algorithm 9.2 on Example 10.2 for computing
Al and A

Algorithm 9.2 performed poorly for computing smallest )\;r or largest /\j_ but reasonably

well for largest )\j+ or smallest A;". The effectiveness of the preconditioners as in (10.1) is
rather evident by comparing the plots in the two columns.

Example 10.2. This is [20, Example 5], where A = I,,,

[20 -10 [15 =5
-10 30 -10 -5 15 -5

-10 30 -10 -5 15 -5

—-10 20 -5 15

and ¢ is a parameter. We take n = 1000 and £ = 1.1. This is a pathological example
in the sense that most quadratic eigenvalues are close to one another — share about 3
significant decimal digits with their neighbors, except )\ir and )\2+ which has a gap from
the rest. When running Algorithm 9.2 with m = 2 and various different n;, we noticed the
algorithm really had hard time computing all extreme )\;t even with some preconditioner
K = £[Q(p)] 7! with € (A, A\]) or u > A} or u > A\] purposely selected, except for A\
and /\; which are rather easy to compute actually. Figure 10.2 plots the residual history
for computing )\1+ and )\;, where the left plot is for without any preconditioner while the
right plot is for with a preconditioner K =~ [@Q(—8.0)]~! implemented through the linear
conjugate gradient method with the same stopping criteria as in the previous example.

11 Concluding remarks

We have perform a systematic study of the hyperbolic quadratic eigenvalue problem
Q(\) = M2A + AB + C. Such a problem usually arises from dynamical systems with
heavy friction. Such a system appears, for example, in in an elevator or car braking sys-
tem. It shares many characteristics with the standard Hermitian eigenvalue problem in
the category of usual standard linear eigenvalue problems, and had attracted quite some
attention in the past. Most of the results were collected in [16, 43, 65].
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Our contributions in this paper lie in two fronts. Theoretically, we have established
Amir-Moéz/Wielandt-Lidskii type min-max principles for the sums of selected quadratic
eigenvalues and, as corollaries, trace min/max type principles, and also perturbation re-
sults in the spectral and Frobenius norm, as well as general unitarily invariant norms
on how the quadratic eigenvalues will change if A, B, C' are perturbed. Numerically,
we have justified a naturally extended Rayleigh-Ritz type procedure, with the existing
and newly established min-max principles, why the procedure will produce the best ap-
proximations to quadratic eigenvalues/eigenvectors, proposed steepest descent/ascent and
CG type methods for computing extreme quadratic eigenpairs, and established conver-
gence results, including the rate of convergence for the steepest descent/ascent methods,
which shed light on preconditioning in what constitutes a good preconditioner and how
to construct one.

Block steepest descent /ascent type methods often perform much better in practice than
their single-vector counterparts, as they should be. But their exact rates of convergence
are hard to establish. Experience shows that their corresponding locally optimal CG type
methods perform even better, but then again we do not know the exact rates of convergence
locally optimal CG type methods, either. It is recommended that locally optimal CG type
methods should be preferred to their corresponding steepest descent/ascent type methods.

Despite many successes we have so far in this paper in extending, as many as we can,
the important results (both theoretically and numerically) for the standard Hermitian
eigenvalue problem, there are more to be done. We list a few here.

e We established perturbation bounds for quadratic eigenvalues, but didn’t do so for
quadratic eigenvectors/eigenspaces. The latter is worth investigating, too. We ex-
pect that min, ¢y(x) will play a role.

e Higham, Mackey, and Tisseur [23] expanded hyperbolic quadratic matrix polynomi-
als to include the case when A is positive semidefinite. Conceivably, many results in
this paper may be extensible to quadratic definite matrix polynomials in the sense
of [23], but care must be taken to deal with infinite quadratic eigenvalues.

e Many results in this paper should be extensible to hyperbolic matrix polynomials of
degrees higher than 2 [43]. We are working on it and results will be detailed in a
separate paper.
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A Digression: positive semidefinite matrix pencil

Let A — AB be a matrix pencil of order n, i.e., A, B € C"*",

Definition A.1 ([38]). A — AB is said Hermitian if both A, B are Hermitian,
positive (semi)definite if it is Hermitian and there exists A\g € R such that A — A\oB > 0
(A—XoB = 0).

The concept of positive semidefinite pencil is closely related to that of the so-called
definite pencil in the past literature [54, 57, 58]. The latter only requires that some
linear combination (with possibly complex coefficients) is positive definite and thus is
necessarily a regular pencil, i.e., det(A — AB) # 0. Definition A.1l uses more restrictive
linear combinations, and also a positive semidefinite pencil of this definition may possibly
be singular, i.e., det(A — AB) = 0.

To include, possibly, the case in which A — AB is a singular pencil, we say p # 0o is a
finite eigenvalue of A — \B if

rank(A — uB) < max rank(A — AB), (A.1)
€

and z € C" is a corresponding eigenvector if 0 # x & N(A) N N(B) satisfies
Az = uBz, (A.2)

or equivalently, 0 # =z € N(A — uB)\(N(A) N N(B)), where N(-) is the null space of a
matrix.

In the rest of this subsection, A — AB is assumed to be a positive semidefinite pencil.
Let the inertia of B be (i_(B),io(B),i+(B)), meaning that B has i_(B) negative, io(B)
zero, and i (B) positive eigenvalues, respectively, and set

n_:=i_(B), ny:=iy(B), r:=rank(B)=mny+n_.

Given 0 < ky <ny and 0 < k_ <n_, set

= [Ik+ —1Ij, ] '

We proved the following theorem in [38, Lemma 3.8], but later found out that it had
been obtained in [13, Theorem 4.1] for the regular pencil case. This theorem play a major
role in this paper.

Theorem A.1 ([13, 38]). Let A— AB be a positive semidefinite Hermitian pencil of order
n, and suppose that \g € R such that A — X\oB = 0.

1. There exists a nonsingular W € C™*™ such that

ny r—mnq n—r nq r—nq n—r
ni Al ny .Ql
WHAW = r—ng AO 5 WHBW = r—ng .QO 5 (AS)
n—r AOO n—r 0

where
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(a) Ay = diag(sia, ..., Sn 0, ), 21 = diag(sy, ..., Sny), Si = £1, and Ay — X821 >
0;
(b) /10 = diag(/loyl, e 7A0,m+m0) and QO = diag(()o,l, ey QO,m+m0) with
Agi = tido, 0 =t;==x1, for1<i<m,
10 Ao 101 .
A0,2—|:)\0 1:|a“(20,2_|:1 0:|, form +1<i<m+myg.

There is no such pair (Ag, 29) if A — B = 0. Evidently m 4+ 2my =1 — nj.
(c) Aso = diag(art1,...,0an) = 0 with a; € {1,0} forr+1<i<n.
The representations in (A.3) are uniquely determined by A— AB, up to a simultane-

ous permutation of the corresponding 1 x 1 and 2 x 2 diagonal block pairs (s;c, s;)
for 1 <i<nq, (Ao, 20,) for 1 <i <m+myg, and (oy,0) forr+1<i<n.

2. A — AB has ny + n_ finite eigenvalues all of which are real. Denote these finite
etgenvalues by )\ii and arrange them as®!

AL < <AL AT < SN (A.4)

3. {y€R|A—~B =0} = [\, ,\]. Moreover, if A— \B is regular, then A — \B is
a positive definite pencil if and only if A, < )\i", in which case

{veR|A—yB >0} = (A, A]).

The next perturbation theorem for positive definite pencils seem to be new. It resem-
bles various perturbation bounds in [8, 32, 33, 54, 57]. For the definition and properties of
such unitarily invariant norms, the reader is referred to [6, 56] for details. In this article,
for convenience, any || - ||, we use is generic to matrix sizes in the sense that it applies to
matrices of all sizes. Examples include the matrix spectral norm || - |2 and the Frobenius
norm || - [|p. Two important properties of unitarily invariant norms are

[ X2 < [[Xlwi, [ XY Z]jus < [[ X2 - 1Y ]lui - 12]]2 (A.5)
for any matrices X, Y, and Z of compatible sizes.

Theorem A.2. Let A — AB and A — \B be two positive definite Hermitian pencils of

order n, admitting the following eigen-decompositions®:
WHAW = A, WHBW =, (A.6a)
wHAW = JA, WUBW =J, (A.6b)

where A is diagonal with diagonal entries consisting eigenvalues of A — AB in ascending
order, J = diag(—I;_(p),l; (B)), and similarly for A and J. Then for any unitarily
invariant norm || - ||ui,

1A= Al < W20 12 (114 ~ Al + €1B = Bl ) (A7)

where € = max{|| A2, || A2}

*'This ordering is different from the one we used in [38, 37] for the neg-type eigenvalues, in order to be
consistent with what we will be using later for hyperbolic matrix polynomials. See Theorem 2.1.
22Quch decompositions are guaranteed by Theorem A.1
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Proof. We have

AWWHB — BWwwhA =0,

AWWHB — BWWHA = AWWHB — BWWHA — (AWWHB — BWWhA)

= (A-AWWHB — (B- B)WWHA.

(A.8)

Pre- and post-multiply (A.8) by JWH and WJ , and plug the decompositions in (A.6) into

(A.8) to get

AW W — W WA =JWHA - AW — JWHB - B)WA.
Switching the roles of A — AB and A — AB, we conclude from (A.9) that
AW W — W WA =JwHA - AW — W (B - B)WA.

It follows from (A.9) and (A.10) that

| AW W = W WAl < W)W 2 (14 — Al + €18 — Bllui),

AW LT = W Al < W ol (14 — Allus + 1B — Bl )

Let W='W = USVH be the SVD of W—'W and set C = VHAV and C =

both of which are Hermitian. It can be verified that

AWW - W ' WA=UCx - xC)VH,
AW W —W-'WA=Vv(ECx' -2 'C)U.

Theorem 2.1 of [7] yields
IC—Cl% < IC2 - 2C|w|CE™" = £7'C )l
Mirsky’s theorem [56, p.204] says
1A= Alli < [IC ~ Clui

The main result (A.7) is now a consequence of (A.11) — (A.13).

(A.9)

(A.10)

(A.11a)
(A.11Db)

Ui AU,

(A.12)

(A.13)

O]

In Theorem A.2, the upper bound by (A.7) contains ||[W]|2 and ||W||2 They can be

bounded, too, in terms of extreme pos- and neg-type eigenvalues.

Theorem A.3. Let A— A\B be a positive definite Hermitian pencil of order n, with eigen-
values given by and ordered as in (A.4), and let its eigen-decomposition be given by (A.6a).

Then for any Ao € (A, _, )\1+)

IWlla < /max{Af, — 0. Ao — A7 }(4 — 2B) !l

1
Wy < A — \oBl|s.
W= l2 < \/min{Af W v I 0Bl
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In particular, taking Ao = (X, + \])/2 gives

W2 < /6, = ADIA — XB) e, (A.150)

_ 2
W2 < \/HHA — AoB|2. (A.15b)

Proof. For \g € ()\71,)\?), A — X\oB > 0. We have A — \oB = Apin(A — M\oB)I,, and thus
Amin(A — XoB) WHW < WH(A = X\eB)W = J(A = Xol) < max{\ — Xo,ho— AT}
which gives (A.14a). We also have
WHA — NB)W = J(A — XoI) = min{\] — Ao, Ao — A, }

to give

w-Hw < !
~ min{A — Ao, Ao — A}

which yields (A.14b). O

(A — XoB)
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