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Abstract

We develop a variance reduction method for smoothing splines. We do this by showing that
the quadratic interpolation method introduced in Cheng et al. (2006), for local linear estimators,
also works for smoothing splines. For a given point of estimation, Cheng et al. (2006) define
a variance-reduced local linear estimate as a linear combination of classical estimates at three
nearby points. We use equivalent kernel function results from Nychka (1995) and Lin et al.
(2004) in the development of our methodologies. First, we develop a variance reduction method
for spline estimators in univariate regression models. Next, we develop an analogous variance
reduction method for spline estimators in clustered/longitudinal models. Finally, simulation
studies are performed which demonstrate the efficacy of our variance reduction methods in
finite sample settings.

Keywords: Variance reduction; smoothing splines; clustered/longitudinal data; nonparametric
regression.

1 Introduction

We generalize the variance reduction methodologies, for local linear estimators, introduced in Cheng

et al. (2006) to smoothing spline estimators. For a given point of estimation, Cheng et al. (2006)

define a variance-reduced local linear estimate as a linear combination of classical estimates at three

nearby points. This linear combination is constructed in such a way to obtain maximal reduction in

asymptotic variance while producing an asymptotic bias which is the same as that of the classical

estimate. There are a few specific features of their variance reduced estimator which our variance

reduced estimators will also possess; (i) global automatic smoothing parameter values can be easily

obtained; (ii) the asymptotic mean squared error is often improved considerably; (iii) the amount of

reduction is uniform across different locations, regression functions, designs and error distributions;
∗To whom correspondence should be addressed.
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(iv) the reductions in asymptotic variance are realized in finite sample cases; and (v) the estimators

admit simple forms and only slightly increase the amount of computation time.

There is a large literature discussing improvements and modifications for kernel and local linear

estimators, most of which have to do with bias reduction; see Cheng et al. (2006) for more details.

There are very few variance reduction methods in print, besides those described in Cheng et al.

(2006); two exceptions are Cheng and Hall (2003, 2004). In contrast there is a much smaller

literature on improvements and modifications for spline estimators and results in print only address

bias reduction; see for instance bias minimizing splines considered in Agarwal and Studden (1980),

and the bias reduction lemma proven in Eubank (1999).

In section 2, we review the variance reduction method from Cheng et al. (2006). In section 3, we

briefly review equivalent kernels for smoothing spline estimators. In section 4, we develop a variance

reduced smoothing splines estimator for the classical nonparametric univariate regression model

via Cheng et al.’s quadratic interpolation procedure. In section 5, we develop a reduced variance

generalized least squares (GLS) smoothing spline estimator for longitudinal/clustered data. Here

we show that quadratic interpolation again yields a variance reduced estimator. The GLS spline

estimator is of particular interest since it achieves it smallest variance when it is constructed with

the true within-subject correlation, as shown in Lin et al. (2004). In contrast, most efficient local

kernel estimators ignore with-in subject correlation as shown in Lin and Carroll (2000). Other spline

methods for clustered/longitudinal data have been investigated by Brumback and Rice (1998),

Wang (2003), Zhang et al. (1998), Lin and Zhang (1999) and Verbyla et al. (1999). In most of

these works, within-subject correlation was incorporated into the construction of spline estimators.

Finally, in section 6, we present the results of simulation studies which demonstrate the efficacy of

our variance reduction methods in finite sample settings.

2 Variance Reduction for Local Linear Estimators

Consider the nonparametric univariate regression model

Yj = θ(Xj) + εj (1)

where observation Y = (Y1, . . . , Yn)T depends upon smooth function θ(x), and errors ε1, . . . .εn

which are assumed to be independent, possessing a zero mean and variance σ2(x). Cheng et al.
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(2006) take as their classical estimator a version of the local linear regressor that admits asymptotic

unconditional variance,

θ̂(x) =
n∑

j=1

w (x, xj) Yj (2)

where w (x, xj) is a weight function given as

h
Sn,2(x)Kh(x− xj)− Sn,1(x)(x− xj)Kh(x− xj)

Sn,0(x)Sn,2(x)− Sn,1(x)Sn,1(x) + n−2

where Sn,l(x) = h
∑n

j=1(x − xj)lKh(x − xj) for l = 0, 1, 2, K (·) is a kernel function, h > 0 is the

bandwidth and Kh(t) = K(t/h)/h.

They then define their variance reduced estimate for θ(x) as

θ̃(x) =
2∑

i=0

Ci(r)θ̂(αx,i) (3)

where αx,0, αx,1, and αx,2 is an equally spaced grid of points and C0(r) = r(r−1)/2, C1(r) = (1−r2),

and C2(r) = r(r + 1)/2. Furthermore, the bin width of this grid of points is chosen so that for

j = 0, 1, 2, αx,j = x− (r + 1− j)δh where r ∈ (−1, 1)\{0} and constant δ > 0.

Cheng et al. (2006) show that under the following set of assumptions: (i) K (·) is a symmetric

density function with compact support; (ii) mean function θ(x) has a bounded second derivative

θ(2)(x); (iii) error density f(x) satisfies f(x) > 0 and |f(x)− f(y)| ≤ c|x− y|α for some 0 < α < 1;

(iv) σ2(x) is continuous and bounded and (v) h → 0 and nh →∞ as n →∞, that

E{θ̃(x)} = θ(x) +
1
2
θ(2)(x)s2h

2 + o{h4 + (nh)−
1
2 }, (4)

V ar{θ̃(x)} =
σ2(x)

nhf(x)
{ν02 − r2(1− r2)A(δ)}+ o{h4 + (nh)−

1
2 }, (5)

where ν02 =
∫

K (s)2 ds,

A(δ) =
3
2
A(0, δ)− 2A(

1
2
, δ) +

1
2
A(1, δ), (6)

A(a, δ) =
∫

K(t− aδ)K(t + aδ)dt (7)

and A(δ) has the following properties: (i) for any symmetric kernel function K (·), A(δ) ≥ 0 for

any δ ≥ 0; and (ii) if K (·) has unique maximum and is concave, then A(δ) is increasing in δ ≥ 0.

From these results it follows that one obtains maximal reduction in asymptotic variance by setting

r = ±1/
√

2.
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3 Equivalent Kernel Functions

The pth order spline estimator for θ(·), which we shall denote as θ̂λ(·), is defined as the minimizer

of
1
n

n∑

j=1

{Yj − θ(xj)}2 + λ

∫

[0,1]

{
θ(p) (x)

}2
dx (8)

over all functions θ(·) in the pth order Sobolev space, W p
2 [0, 1], defined as {θ(·) : θ(·), . . . , θ(p−1)(·)

absolutely continuous and θ(p)(·) ∈ L2[0, 1]}. Here θ(k)(·) denotes the kth derivative of θ(·) for

k = 1, . . . , p and in equation (8) λ is the smoothing parameter. The pth order smoothing spline

estimator, of θ̂λ(x) is given as

θ̂λ(x) = (I + nλS)−1Y (9)

where S is the smoothing matrix; see Green and Silverman (1994).

This smoothing spline estimator can be defined as weighted average of the observations, much

like the classical estimator discussed in Cheng et al. (2006), for some equivalent “spline kernel”

function; see Silverman (1984). The spline kernel function in general does not have a closed form.

Nychka (1995) describes how the kernel function for a pth order spline may be approximated by the

Green’s function, Gλ(x, τ), which solves a particular 2pth order differential equation and presents

an exponential envelope bound on the absolute difference between the spline kernel function and the

Green’s function which approximates it; see Theorem 2.1, Nychka (1995). This bound and other

bounds given in Nychka (1995) hold exactly for finite sample sizes and are sufficiently accurate for

our work.

4 Variance Reduced Spline Estimators for Univariate Regression

Models

Our variance reduced estimate for θ(x) in model (1), θ̃λ(x), is defined in a fashion similar to Cheng

et al.’s so that substitution of spline estimates for local linear estimates is made, i.e.,

θ̃λ(x) =
2∑

i=0

Ci(r)θ̂λ(αx,i). (10)

and where root γ = λ1/2p plays a role analogous to that played by bandwidth parameter h in kernel

estimator and for j = 0, 1, 2, αx,j = x− (r + 1− j)δγ where r ∈ (−1, 1)\{0} and δ > 0.
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For the development of asymptotic bias and variance formulae for θ̃λ(x) for we assume the

following sets of conditions from Nychka (1995) (i) Dn = sup[0,1] |Fn (x)− F (x)| converges almost

surely to zero where Fn (·) and F (·) are the empirical and true cumulative distribution functions,

respectively, for the X ′
is; (ii) the exponential envelope condition (assumptions A and B); (iv) the

Holder condition on θ(·); Nychka’s pth order bias and variance formulae in his equations 1.9 and

1.10, and (iv) Requisite conditions for the p > 1 version of Nychka’s Theorem 5.1 to hold (see

section 7 of Nychka (1995) for details). Under this combined set of assumptions we prove the

following theorem.

Theorem 1 Assume that θ̂λ is a pth order smoothing spline estimate and the observation points are

not equally spaced. Suppose that θ(·) ∈ C2p[0, 1] and that f has a uniformly continuous derivative.

Then we have

E
{

θ̃λ(x)
}
− θ(x) =

(−1)p−1 λ

f(x)
θ(2p)(x) + o(λ) (11)

V ar
{

θ̃λ(x)
}

=
σ2f1/2p−1(x)

n
(ν02 − r2(1− r2)A

{
κ−1f (x)1/2p δ

}
+ op{(nλ1/2p)−1} (12)

uniformly for x in the interior of [0, 1] where κ =
∫
[0,1] f (x)1/2p dx, δ > 0 is a constant, and

equivalent kernel K (·) solves equation (10) from Lin et al. (2004).

Remark The precise definition of the interior of [0, 1] is given in Nychka (1995) is that for some

small ∆ > 0, x ∈ [∆, 1−∆].

Remark Equation (10) from Lin et al. (2004) is

(−1)p K(2p) (x) + K (x) = ∆ (x)

where ∆ (x) is the Dirac delta function.

A comparison of our results with equations 1.9 and 1.10 of Nychka (1995) shows that the

asymptotic bias of θ̃λ(x) and θ̂λ(x) is identical, while the leading term in the asymptotic variance

of θ̃λ(x) is smaller than that of θ̂λ(x) (gotten by letting r = 1) for any r ∈ (−1, 1)\{0} since

r2(1 − r2)A
{

κ−1f (x)1/2p δ
}
≥ 0 over this range of values. Furthermore, one obtains maximal

reduction in asymptotic variance by setting r = ±1/
√

2.

Proof of Theorem 1. First we consider the asymptotic bias of θ̃λ(x). Using stochastic Taylor
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series expansions we have

E{θ̃λ(x)} =
2∑

i=0

Ci(r)E{θ̂λ(αx,i)}

=
2∑

i=0

Ci(r)E{θ̂λ(x) + θ̂
(1)
λ (x)(αx,i − x) + θ̂

(2)
λ (x)(αx,i − x)2/2 + Op(γ3)}

=
2∑

i=0

Ci(r){E{θ̂λ(x)} − E{θ̂(1)

λ (x)}(r + 1− i)δγ + E{θ̂(2)

λ (x)}(r + 1− i)2 (δγ)2 /2 + O(γ3)}

=
2∑

i=0

Ci(r){θ(x) +
(−1)p−1 λ

f(x)
θ(2p)(x) + o(λ)} − E{θ̂(1)

λ (x)} (δγ)
2∑

i=0

Ci(r)(r + 1− i)

+
[
E{θ̂(2)

λ (x)}(δγ)2/2
] 2∑

i=0

Ci(r)(r + 1− i)2 + O(λ3/2)

= θ(x) +
(−1)p−1 λ

f(x)
θ(2p)(x) + o(λ)

Therefore the asymptotic bias remains unchanged by the construction of our variance reduced spline

estimator. Note that in above derivation we make use of the following identity:

C0(r)(−1− r)j + C1(r)(−r)j + C2(r)(1− r)j = δ0,j for j = 0, 1, 2. (13)

Next, we consider the asymptotic variance of θ̃λ(x). To do this, however, we must first consider

the covariance of spline estimates θ̂λ(u) and θ̂λ(v) at points u, v ∈ [αx,0, αx,2];

Cov(θ̂λ(u), θ̂λ(v)) =
1
n2

n∑

i=1

n∑

j=1

w(u, xi)w(v, xj)Cov(Yi, Yj)

=
σ2

n2

n∑

i=1

w(u, xi)w(v, xi)

=
σ2

n

∫

[0,1]
w(u, τ)w(v, τ)dFn(τ)

=
σ2

n
(B1 + B2 + B3)

where

B1 =
∫

[0,1]
Gλ(u, τ)Gλ(v, τ)dF (τ),

B2 =
∫

[0,1]
(w(u, τ)w(v, τ)−Gλ(u, τ)Gλ(v, τ))dF (τ),

B3 =
∫

[0,1]
w(u, τ)w(v, τ)d(F − Fn)(τ).
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For the B2 term we have,

B2 =
∫

[0,1]
(w(u, τ)w(v, τ)−Gλ(u, τ)Gλ(v, τ))f(τ)dτ

=
∫

[0,1]
[w(v, τ)(w(u, τ)−Gλ(u, τ)) + Gλ(u, τ)(w(v, τ)−Gλ(v, τ))]f(τ)dτ

≤
∫

[0,1]
(|w(v, τ)||w(u, τ)−Gλ(u, τ)|+ |Gλ(u, τ)||w(v, τ)−Gλ(v, τ)|)f(τ)dτ

≤ sup[0,1]f(τ)

{∫

[0,1]
|w(v, τ)||w(u, τ)−Gλ(u, τ)|dτ +

∫

[0,1]
|Gλ(u, τ)||w(v, τ)−Gλ(v, τ)|)dτ

}

Using Nychka (1995)’s exponential envelope conditions we have for some positive constants C, α <

∞
∫

[0,1]
|w(v, τ)||w(u, τ)−Gλ(u, τ)|dτ ≤ sup

[0,1]
|w(v, τ)|

∫

[0,1]
|w(u, τ)−Gλ(u, τ)|dτ

=
Cδn

(1− δn)γ

∫

[0,1]
exp (−α|u− τ |/γ) dτ

=
C2δn

(1− δn)
= O(δn) = O(Dn/λ1/2p).

where positive constant C2 < ∞.

Similarly, ∫

[0,1]
|Gλ(u, τ)||w(v, τ)−Gλ(v, τ)|)dτ = O(Dn/λ1/2p)

which yields

B2 = O(Dn/λ1/2p).

For the B3 term;

B3 =
∫

[0,1]
w(u, τ)w(v, τ)d(F − Fn)(τ)

≤
∣∣∣∣∣
∫

[0,1]
w(u, τ)w(v, τ)dF (τ)−

∫

[0,1]
w(u, τ)w(v, τ)dFn(τ)

∣∣∣∣∣ .
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According to Nychka (1995) Lemma 4.1

B3 ≤ sup
[0,1]

|Fn − F |
∫

[0,1]

∣∣∣∣
dw(u, τ)w(v, τ)

dτ

∣∣∣∣ f(τ)dτ

= Dn

∫

[0,1]
|w′

τ (u, τ)w(v, τ) + w(u, τ)w
′
τ (v, τ)|f(τ)dτ

= Dn sup
[0,1]

|f(τ)|
∫

[0,1]
|w′

τ (u, τ)w(v, τ) + w(u, τ)w
′
τ (v, τ)|dτ

≤ Dn sup
[0,1]

|f(τ)|
{∫

[0,1]
|w′

τ (u, τ)w(v, τ)|dτ +
∫

[0,1]
|w(u, τ)w

′
τ (v, τ)|dτ

}
.

By exponential envelope conditions in Nychka (1995) we have for some positive constants C,α < ∞
∫

[0,1]
|w′

τ (u, τ)w(v, τ)|dτ ≤ sup
[0,1]

|w(v, τ)|
∫

[0,1]
|w′

τ (u, τ)|dτ

C

(1− δn)γ2

∫

[0,1]
exp (−α|u− τ |/γ) dτ

≤ C2

(1− δn)γ
.

for some positive finite constant C2. Using similar arguments we find that
∫

[0,1]
|w(u, τ)w

′
τ (v, τ)|dτ ≤ C3

(1− δn)γ

for some positive finite constant C3. Finally we have

B3 ≤ Dn (C2 + C3)
(1− δn)γ

= O(Dn/λ1/2p).

For the B1 term, we need a technique outlined in Nychka (1995, section 7) by which equivalent

kernel function Gλ(x, τ) for a nonuniform design is approximated, as γ → 0, by GU
λ/κ2(Γ (t) , Γ (τ))ζ (τ) /f (τ)

where ζ (t) = Γ (t)
′
= (1/κ) f(t)1/2p. Letting ht(τ) = Gλ(t, τ) and h̄t(τ) = GU

λ/κ2(Γ (t) , Γ (τ))ζ (τ) /f (τ)

consider,
∣∣∣∣∣
∫

[0,1]
huhvf (τ) dτ −

∫

[0,1]
h̄uh̄vf (τ) dτ

∣∣∣∣∣ =

∣∣∣∣∣
∫

[0,1]

{
huhv − huh̄v + huh̄v − h̄uh̄v

}
f (τ) dτ

∣∣∣∣∣

=

∣∣∣∣∣
∫

[0,1]

{
hu

[
hv − h̄v

]
+ h̄v

[
hu − h̄u

]}
f (τ) dτ

∣∣∣∣∣

≤
∫

[0,1]

{|hu|
∣∣hv − h̄v

∣∣ +
∣∣h̄v

∣∣ ∣∣hu − h̄u

∣∣} f (τ) dτ
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Consider the first term in the above integral, from Theorem 5.1 of Nychka (1995), there exists

C, α < ∞ for which
∫

[0,1]
|hu|

∣∣hv − h̄v

∣∣ f (τ) dτ ≤ sup
[0,1]

{|hu| f (τ)}
∫

[0,1]

∣∣hv − h̄v

∣∣ f (τ) dτ

≤ C

∫

[0,1]
exp (−α |v − τ | /γ) dτ

= C2γ = o (γ) .

The second term can be shown to be o (γ) in a similar fashion where boundedness of
∣∣h̄v

∣∣ proven

by with the following bound:

∣∣h̄v

∣∣ =
∣∣h̄v − hv + hv

∣∣ ≤ ∣∣h̄v − hv

∣∣ + |hv| .

Therefore, the leading term in the covariance will be determined by
∫

[0,1]
κ−2GU

λ/κ2(Γ (u) , Γ (τ))GU
λ/κ2(Γ (v) , Γ (τ))f (τ)1/p−1 dτ

as λ → 0. Letting ȳ = Γ (y) this integral may written as
∫

[0,1]
κGU

λ/κ2(ū, τ̄)GU
λ/κ2(v̄, τ̄)f

(
Γ−1 (τ̄)

)1/2p−1
dτ̄ .

For small λ, f
(
Γ−1 (τ̄)

)1/2p−1 will be dominated by the product Green’s functions in the integrand.

This yields

Cov
{

θ̂λ(u), θ̂λ(v)
}

=
σ2f (x)1/2p−1

n

∫

[0,1]
GU

λ/κ2(ū, t)GU
λ/κ2(v̄, t)dt + o(γ) (14)

for u and v in the interior of [0, 1].

Next, consider

V ar{θ̃λ(x)} =
2∑

i=0

C2
i (r)V ar{θ̂λ(αx,i)}+ 2

2∑

i=0

2∑

j=i+1

Ci(r)Cj(r)Cov{θ̂λ(αx,i), θ̂λ(αx,j)}. (15)

Taylor series expansion yields

Γ (αx,j) = Γ (x)− κ−1f1/2p(x) [(r + 1− j) γδ] + O(γ2) (16)

for j = 1, 2, 3. Expression (12) is may be obtained by plugging (16) and (14) into (15). Silverman

(1984) shows that GU
λ (t, τ) may be uniformly approximated by K (|t− τ | /γ) /γ for an equivalent

kernel K (·); which yields, after a bit of algebra, expression (12). Furthermore, by Proposition 1 of

Cheng et al. (2006), we have that A
{

κ−1f (x)1/2p δ
}

> 0 and as such we obtain maximal reduction

in variance for r = ±1/
√

2. ¤
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5 Variance Reduced Spline Estimators for Clustered\Longitudinal

Models

In what follows we assume our clustered data comes from n clusters where the ith cluster consists of

mi observations. Furthermore, we assume that each observation of a response variable is observed

with the value of exactly one covariate. To simplify our development, we assume that mi = m for

all i. We do this without lack of generality, since our results will be applicable in data sets with

non-constant cluster sizes. The nonparametric model for clustered data is

Yij = θ(Xij) + εij (17)

where Yij and Xij ∈ [0, 1] are the jth observed response and covariate values in the ith cluster for

i = 1, . . . , n and j = 1, . . . , m. Here, θ(x) is an unknown but smooth regression function, and errors

εi = (εi1, . . . , εim)T are independent with mean zero and covariance matrix Σ.

Lin et al. (2004) define the (pth order) generalized least squares (GLS) smoothing spline

estimator of θ(x) as the function which minimizes

1
n

n∑

i=1

{Yi − θ(Xi)}T W−1{Yi − θ(Xi)}+ λ

∫

[0,1]
{θ(p)(x)}2dx (18)

over θ ∈ Wm
2 [0, 1], where Yi = (Yi1, Yi2, . . . , Yim), Xi = (Xi1, Xi2, . . . , Xim), W denotes a working

covariance matrix, λ is a smoothing parameter, and θ(p)(x) is the pth derivative of spline estimator

for θ(x). The resulting GLS smoothing spline estimator, of θ̂λ(x) is given as

θ̂λ(x) = (W̃−1 + nλS)−1W̃−1Y (19)

where W̃−1 = diag{W−1, · · · ,W−1}. For a fixed value of λ, var{θ̂λ(x)} achieves its minimal value

for W = Σ as shown in Welsh et al. (2002).

Our variance reduced GLS spline estimator for θ(x) is given as

θ̃λ(x) =
2∑

i=0

Ci(r)θ̂λ(αx,i) (20)

where αx,0, αx,1, αx,2, and C0(r), C1(r) and C2(r) are defined as in section 4.

In the development of asymptotic bias and variance formulae for θ̃λ(x) for we assume (i) all sets

of conditions given in section 4 and (ii) Green’s function properties (A11) through (A14) from Lin

et al. (2004).
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Theorem 2 Denote by θ̃λ(X) the pth order variance reduced GLS spline estimator given in (19)

using any given working covariance matrix W . Assume that the marginal densities fj(x) of the

Xij have uniformly continuous derivatives then we have for x in the interior of [0, 1];

E
{

θ̃λ(x)
}
− θ(x) = (−1)p−1

(
λ

η(x)

)
bs(x) + o(λ) (21)

where η(x) =
∑m

j=1 vjjfj(x), vjj is the (j, j)th element of V −1and bs(x) satisfies

m∑

j=1

m∑

k=1

vjkE{bs(Xk)|Xj = x}fj(x) =
1
ap

η(x)θ(2p)(x) (22)

and where ap is a constant and

V ar
{

θ̃λ(x)
}

=
1
n

{
λ

η(x)

}− 1
2p υ(x)

η2(x)

(
v02 − r2(1− r2)A

{
κ−1f (x)1/2p δ

})
+ op{(nλ1/2p)−1}. (23)

where equivalent kernel K (·) solves equation (10) in Lin et al. (2004), and υ(x) =
∑m

j=1 cjjfj(x)

with cjj being the (j, j)th element of C = V −1ΣV −1.

A comparison of these results with those from Proposition 4 of Lin et al. (2004) shows that

the asymptotic bias of θ̃λ(x) and θ̂λ(x) are the same, while the leading term in the asymptotic

variance for θ̃λ(x) is smaller than that of θ̂λ(x) (which corresponds to the r = 1 case) for any r ∈
(−1, 1)\{0} since r2(1 − r2)A

{
κ−1f (x)1/2p δ

}
≥ 0 over this range of values. As in section 4, one

obtains maximal reduction in asymptotic bias with r = ±1/
√

2.

Proposition 2 of Lin et al. (2004) describes the asymptotic equivalence between the GLS spline

estimator with smoothing parameter λ and the seeming unrelated kernel estimator from Wang

(2003) with effective bandwidth h(x) = {λ/
∑m

j=1 σjjfj(x)}1/2p. From this it follows that the

variance reduced GLS spline estimator with the smallest variance is obtained by assuming that the

working covariance matrix V equals the true covariance Σ, i.e., V = Σ. Its variance is

V armin

{
θ̃λ(x)

}
=

1
n

{
λ

η(x)

}− 1
2p τ(x)

η2(x)

[
v02 − r2(1− r2)A

{
κ−1f (x)1/2p δ

}]
∑m

j=1 σjjfj(x)
+ op{(nλ1/2p)−1}.

(24)

Proof of Theorem 2. It straightforward to show with stochastic Taylor series expansions that

the leading term in the bias of the θ̃λ(x) is the same as that of θ̂λ(x). Lin et al. (2004) present in

part (iv) of proposition 4 the following asymptotic expansion for the GLS spline estimator:

θ̂λ(x)− θ (x) = D (x) + (−1)p−1 h2p (x) b(x) + op

[
{nh (x)}−1/2 + h2p (x)

]

11



where

D(x) =


n

m∑

j=1

vjj



−1

n∑

i=1

m∑

j=1

m∑

k=1

Gλ̃(x,Xik)vjk{Yik − θ(Xik)},

λ̃ = λ/
∑m

j=1 vjj , effective bandwidth h (x) =
[
λ/

{∑m
j=1 vjjfj (x)

}]1/(2p)
, and b(x) satisfies a

condition stated in part (i) of their proposition 4.

To derive the asymptotic variance of θ̃λ(x) we need to first study the asymptotic covariance of

GLS spline estimates θ̂λ(u) and θ̂λ(v) at points u, v ∈ [αx,0, αx,2]. The D (x) term may be written

in matrix-vector form as

D(x) =


n

m∑

j=1

vjj



−1

n∑

i=1

Gλ̃(x,Xi)T V −1Ξi (25)

where Gλ̃(x,Xi) = {Gλ̃(x,Xi1), Gλ̃(x,Xi2), · · · , Gλ̃(x,Xim)}T and Ξi = Yi − θ(Xi). It follows that

Cov
{

θ̂λ(u), θ̂λ(v)
}

= Cov[D(u), D(v)] + o(1)

=


n

m∑

j=1

vjj



−2

n∑

i=1

n∑

j=1

Cov[Gλ̃(u,Xi)T V −1Ξi, Gλ̃(v, Xj)T V −1Ξj ] + o(1)

= T1 (u, v) + T2 (u, v) + o(1)

where

T1 (u, v) =


n

m∑

j=1

vjj



−2

n∑

i=1

m∑

j=1

Gλ̃(u,Xij)cjjGλ̃(v,Xij),

T2 (u, v) =


n

m∑

j=1

vjj



−2

n∑

i=1

m∑

j=1

∑

k 6=j

Gλ̃(u, Xij)cjkGλ̃(v, Xik).

Consider the T2 term first

T2 (u, v) =




m∑

j=1

vjj



−2

1
n

m∑

j=1

∑

k 6=j

cjk
1
n

n∑

i=1

Gλ̃(u,Xij)Gλ̃(v,Xik)

=




m∑

j=1

vjj



−2

1
n

m∑

j=1

∑

k 6=j

cjk

∫

[0,1]2
Gλ̃(u,Xij)Gλ̃(v, Xik)dFn (τ, s)

=




m∑

j=1

vjj



−2

1
n

m∑

j=1

m∑

j=1

∑

k 6=j

cjk

∫

[0,1]2
Gλ̃(u, τ)Gλ̃(v, s)fjk(τ, s)dτds + op(n−1).

12



Taylor series expansion yields, for some v∗ between u and v,

Gλ̃(v, s) = Gλ̃(u, s) + G
′
λ̃
(v∗, s) (u− v) .

As such the above integral may be written as the sum of two integrals:
∫

[0,1]2
Gλ̃(u, τ)Gλ̃(u, s)fjk(τ, s)dτds =

fij (u, u)
f (u)2

+ o (1)

by equality A14 in Lin et al. (2004); and

(u− v)
∫

[0,1]2
Gλ̃(u, τ)G

′
λ̃
(v∗, s)fjk(τ, s)dτds = O (γ)

since (u− v) = O (γ) and the boundedness of Gλ̃(u, τ)G
′
λ̃
(v∗, s) is guaranteed by the exponential

envelope conditions of Nychka (1995). As result T2 (u, v) = Op

(
n−1

)

For the T1 term we have

T1 (u, v) =




m∑

j=1

vjj



−2

1
n

m∑

j=1

cjj

∫

[0,1]
Gλ̃(u, τ)Gλ̃(v, τ)fj(τ)dτ + op(1)

=




m∑

j=1

vjj



−1

1
n

∫

[0,1]

υ(τ)
η(τ)

Gλ̃(u, τ)Gλ̃(v, τ)f(τ)dτ + op(1)

=




m∑

j=1

vjj



−1

1
n

∫

[0,1]

υ(τ)
κ2η(τ)

GU
λ̃/κ2(Γ (u) , Γ (τ))GU

λ̃/κ2(Γ (v) ,Γ (τ))f (τ)1/p−1 dτ + op(1)

as λ → 0. Letting ū = Γ (u) , v̄ = Γ (v) and τ̄ = Γ (τ), T1,n may written as




m∑

j=1

vjj



−1

1
n

∫

[0,1]

υ(Γ−1 (τ̄))
κη(Γ−1 (τ̄))

GU
λ̃/κ2(ū, τ̄)GU

λ̃/κ2(v̄, τ̄)f
(
Γ−1 (τ̄)

)1/2p−1
dτ̄ .

As γ → 0 υ(Γ−1(τ̄))
η(Γ−1(τ̄))

f1/2p−1(Γ−1 (τ̄)) will be dominated by the product Green’s functions in the

integrand. It follows that

Cov
{

θ̂λ(u), θ̂λ(v)
}

=




m∑

j=1

vjj



−1

υ(x)f (x)1/2p−1

nκη(x)

∫

[0,1]
GU

λ̃/κ2(ū, t)GU
λ̃/κ2(v̄, t)dt + op(1)

=
1
n

{
λ

η(x)

}− 1
2p υ(x)

η2(x)

∫

[0,1]
GU

λ̃/κ2(ū, t)GU
λ̃/κ2(v̄, t)dt + op(1) (26)

uniformly for u and v in the interior of [0, 1].

13



For the variance of θ̃λ(x), we have

V ar
{

θ̃λ(x)
}

=
2∑

i=0

C2
i (r)V ar

{
θ̂λ(αx,i)

}
+ 2

2∑

i=0

2∑

j=i+1

Ci(r)Cj(r)Cov
{

θ̂λ(u), θ̂λ(v)
}

. (27)

Expression (23) is now easily derived.

6 Simulation Studies

In this section we discuss the results of simulation studies, performed in FORTRAN, to evaluate the

finite sample performance of our proposed variance reduced (cubic) smoothing spline estimators.

Here we use an averaged estimator θ̃avg
λ (x) =

{
θ̃
−1/

√
2

λ (x) + θ̃
1/
√

2
λ (x)

}
/2 where θ̃

±1/
√

2
λ (x) denotes

the variance reduced estimator with r set equal to ±1/
√

2. Cheng et al. (2006) show that the

averaged variance reduced local linear estimator can be expected to have smaller bias, than their

r = −1/
√

2 or r = 1/
√

2 estimators, under fairly general conditions. This result is easily shown to

also hold for our variance reduced spline estimators.

We simulated data from several univariate regression and clustered/longitudinal models. For

each dataset, the smoothing parameter was chosen by GCV (Generalized Cross Validation), pa-

rameter δ was taken to be 0.6, 1.0 and 1.4, to test the sensitivity to the choice of δ, the mean

integral squared errors (MISE’s) were approximated by the average, of approximate integrals of the

squared error, over the 200 replicates.

The three univariate regression models we considered were: (i) 0.3 exp{−16(x − 0.25)2} +

0.7 exp{−64(x−0.75)2}; (ii) 2−5x+exp{−400(x−0.5)2} and (iii) sin(5πx). In each case X-values

were generated according to a uniform (0, 1) design, random errors was taken to be independent

N(0, 1), and the sample size was taken to be 100. The ratio of MISE’s for the classical smoothing

spline (9) and variance reduced smoothing spline (10) were computed. Results are summarized in

the Table 1. From our simulations, we see that the variance reduced spline estimator has smaller

variance than that of the classical estimator and this variance is not sensitive to the choice of δ.

Four clustered/longitudinal models were considered: (i) sin(2w) where w = 4x− 2;

(ii)
√

x(1− x) sin{2π(1 + 2−3/5)/(x + 2−3/5)}; (iii)
√

x(1− x) sin{2π(1 + 2−7/5)/(x + 2−7/5)} and

(iv) sin(8x−4)+2 exp{−256(x−0.5)2}. The number of subjects was taken to be n = 50 or n = 100,

the cluster size was set at m = 3 and covariate Xij was generated independently from the uniform

14



δ = 0.6 δ = 1.0 δ = 1.4

Model 1 1.0619 1.1480 1.1663

Model 2 1.0268 1.1124 1.2332

Model 3 1.0139 1.0629 1.1394

Table 1: Ratio of MISE’s for the Univariate Regression Models.

(0, 1) distribution. We assumed that the marginal variances of the Y ′
ijs were 1, and considered

three hypothetical covariance structures: (i) Exchangeable with common correlation of 0.6; (ii)

Autoregressive with correlation 0.6 and (iii) Unstructured with ρ12 = ρ23 = 0.8 and ρ13 = 0.5. For

each configuration, we generated 200 simulated datasets and estimated θ(x) using classical GLS

smoothing spline estimator (19) and variance reduced GLS smoothing spline estimator (20) with

W = Σ. The ratio of MISE’s for the classical and variance reduced estimators were computed.

Results are summarize in Tables 2, 3 and 4.

Exchang.

n = 50

Exchang.

n = 100

AR(1)

n = 50

AR(1)

n = 100

Unstruct.

n = 50

Unstruct.

n = 100

Model 1 1.1260 1.2291 1.1213 1.2159 1.1559 1.3059

Model 2 1.1613 1.2381 1.1489 1.2172 1.2321 1.3252

Model 3 1.0339 1.0134 1.0168 0.9825 1.1706 1.2201

Model 4 1.0132 1.0759 1.0131 1.0726 1.0138 1.0773

Table 2: Ratio of MISE’s for the Longitudinal Models, δ = 0.6

Exchang.

n = 50

Exchang.

n = 100

AR(1)

n = 50

AR(1)

n = 100

Unstruct.

n = 50

Unstruct.

n = 100

Model 1 1.4157 1.5682 1.4015 1.5356 1.4682 1.6613

Model 2 1.3925 1.5130 1.3677 1.4620 1.5018 1.5875

Model 3 0.9394 0.8854 0.9422 0.8896 1.2089 1.1313

Model 4 1.0605 1.2459 1.0603 1.2370 1.0616 1.2447

Table 3: Ratio of MISE’s for the Longitudinal Models, δ = 1.0

From these simulations, we see that the variance reduced spline estimator generally has smaller
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Exchang.

n = 50

Exchang.

n = 100

AR(1)

n = 50

AR(1)

n = 100

Unstruct.

n = 50

Unstruct.

n = 100

Model 1 1.7124 1.8287 1.6883 1.7828 1.7532 1.9095

Model 2 1.5152 1.6158 1.4845 1.5481 1.6559 1.7167

Model 3 0.9394 0.8859 0.9422 0.8897 1.0377 1.0858

Model 4 1.1351 1.4362 1.1341 1.4221 1.1359 1.4279

Table 4: Ratio of MISE’s for the Longitudinal Models, δ = 1.4

variance than that of the classical estimator and this variance is sensitive to the choice of δ par-

ticularly when the regression function is highly oscillatory. In such situations, it is best to use

smaller values of δ. This phenomenon has also been noted in section 4.2 of Cheng et al. (2006)

were they suggest that δ = 1 is a good default value for variance reduced local linear estimators in

univariate regression problems. In contrast, our results suggest that δ = 0.6 is a good default value

for variance reduced smoothing spline estimators in clustered or longitudinal data problems.
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