
http://www.uta.edu/math/preprint/

Technical Report 2007-21

Reconstruction of Differentiable
Transformations

Jie Liu
Guojun Liao
Jiaxing Xue

 1

Reconstruction of Differentiable Transformations

Jie Liu
Department of Mathematics
Dixie State College
St George, UT 84770 USA

*Guojun Liao (Corresponding Author)
Department of Mathematics
University of Texas at Arlington
Arlington, TX 76019-0408 USA

Jiaxing Xue
Department of Computer Science Engineering
University of Texas at Arlington
Arlington, TX 76019 USA

Abstract: In the first part of this paper, various versions of the deformation method for
grid adaptation and their applications are described. The main result of the paper is
contained the second part. In particular, based on the deformation method, we propose a
method of reconstructing any differentiable, invertible transformation on a square or a
cube.

Key Words: Adaptive grids, Reconstruction of Transformations

 2

1. Introduction
In order to solve partial differential equations (PDEs) numerically, we need to

discretize the continuous differential equation into a system of algebraic equations for the nodal
values of the field on a suitable grid (mesh) covering the physical domain.

Accuracy of the solution and computational efficiency are the two main concerns in
computational grid generation. For problems with shock waves, boundary layers, etc. very fine
grids over a small portion of the physical domain are required in order to resolve the large
solution variations. The idea is to always put dense grids on the part which has large variation
and coarse grids on the part which is smooth.

Various techniques ([8][9][10][11][12][14][19]) have been developed for generating
moving grids, which relocate grid points to regions where higher resolution is needed. The total
number of points and the connection between grid points are kept the same so that there is no
need to change the data structure of the solver.

Different numerical methods are combined with moving grid techniques. Moving finite
difference ([15],[16])and moving finite element ([17],[18])algorithms are developed. A moving
mesh finite element method is designed to solve the incompressible Navier-Stokes equations in
[20]. Some adaptive moving techniques for finite element and finite difference methods are
reviewed in [21]. In [22], a moving mesh finite volume method is developed. Recently, the idea
of meshfree adaptation is implemented in [38] and [39]. An overview of the meshfree methods
can be found in [40].

In this work, we describe three versions of the deformation method. Then we study a
reconstruction problem: Given a differentiable and invertible transformation, reconstruct the
transformation by a differential system of linear, first order differential operators. Such a
reconstruction method is proposed and some numerical examples are presented. The method is
based on the deformation method developed in [27] and [28]. The least squares finite element
method is used to solve the partial differential equations. This reconstruction approach has
potential applications in image registration and computer vision simulation.

 3

2. The Deformation Method
The deformation method is based on the idea of equivalent volume elements of a

compact Riemannian manifold [26]. In 1992, this method is modified for grid adaptation in
[28]. In this approach a new grid is constructed by moving the grid points such that specified
cell volume distribution is achieved. A monitor function is defined according to the desired
volume distribution. It is used to obtain a vector field by solving a linear Poisson equation. The
grid points are moved according to a velocity field related to the vector field so obtained. The
mathematical principles behind this method guarantee that grid lines of the same grid family
will not cross each other. In [28], the Jacobian determinant, and consequently the cell volumes,
was specified on the old grid before adaptation. In [31], the method is improved so that cell
volumes can be specified as functions of the new grid after adaptation. In [30], this method is
further extended into a real time moving grid method and used for solving one-dimensional
unsteady problems. Some 1D and 2D applications and more analysis of adaptive moving grid
by the deformation method were done in [29]. In [34], an adaptive deformation method is
applied to solve the compressible Euler equations for field flows. A least-square finite element
deformation method is developed in [36] and applied in [33] to a nonlinear problem. A 2D
moving grid geometric deformable model using deformation method is developed in [35] for
segmentation of image processing.

There are three versions of deformation method.
2.1 Version1

This is one of the steady versions of the deformation method where the Jacobian
determinant is specified on the old grid ξ before adaptation.
Problem: Given a monitor function ()f ξ , find a transformation ()1φ ξ such that

 () () ()1 1detJ fφ φ ξ ξ= ∇ = (2.1)
We can use the following two steps to find such a transformation.
Step 1: Find a vector field ()V ξ that satisfies:

 () ()div 1V fξ ξ= − (2.2)

Step 2: Define
()1t

VV
t t f

=
+ −

and find transformations ()tφ ξ by solving the ordinary

differential equations

() () []0,1t

t t

d
V t

dt
φ ξ

φ= ∈ (2.3)

Here () (),t tφ ξ φ ξ= , and let () ()1 , 1tφ ξ φ ξ= = .

Now, let us show that ()1φ ξ satisfies (2.1).
In order to prove this, let

() ()() () ()()

()() () ()()

, 1

det 1

t t

t t

H t J t t f

t t f

ξ φ ξ φ ξ

φ ξ φ ξ

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= ∇ + −⎣ ⎦

 (2.4)

We now show

 4

 0H
t

∂
=

∂
 (2.5)

Since () ()0 , 0tφ ξ φ ξ= = is the identity mapping, we have ()0det 1φ ξ∇ = and ()0φ ξ ξ= .
Assuming that (2.5) is true. Then
 () ()() ()() ()0 00, detH f fξ φ ξ φ ξ ξ= ∇ = (2.6)

Also by (2.4) we have 1(1,) det ()H ξ φ ξ= ∇ (2.7)
Thus (2.1) follows from (2.5), (2.6) and (2.7).
In order to prove (2.5), we need the Abel’s Lemma.
Abel’s Lemma:
Let M be a n n× matrix such that each element of the matrix is differentiable function of t . If

()d M AM
dt

= where A is a n n× matrix, then (det) (trace)(det)d M A M
dt

= .

This is a standard lemma, which can be found, for instance, in [25] or other standard
ordinary differential equation textbooks.

Now we prove (2.5).
Proof:

()() () ()()()

()() () ()()

()() () ()()

det 1

det 1

det 1

t t

t t

t t

H t t f
t t

t t f
t

t t f
t

φ ξ φ ξ

φ ξ φ ξ

φ ξ φ ξ

∂ ∂ ⎡ ⎤= ∇ + −⎣ ⎦∂ ∂

∂ ⎡ ⎤ ⎡ ⎤= ∇ + −⎣ ⎦ ⎣ ⎦∂

∂ ⎡ ⎤+ ∇ + −⎣ ⎦∂

 (2.8)

Since () ()()() ()()t t
d d V V
dt dt φ

φφ φ ξ φ⎛ ⎞∇ = ∇ = ∇ = ∇ ∇⎜ ⎟
⎝ ⎠

, by Abel’s Lemma we get:

() ()()()det trace dettV
t φφ φ∂

∇ = ∇ ∇
∂

, (2.9)

where

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

t

VV V

VV VV

VV V

φ

φ φ φ

φ φ φ

φ φ φ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∇ =

∂ ∂ ∂
∂∂ ∂

∂ ∂ ∂

Thus () 31 2

1 2 3

trace divt t
VV VV Vφ φφ φ φ
∂∂ ∂

∇ = + + =
∂ ∂ ∂

 (2.10)

Putting (2.10) into (2.9), we have

 5

 () ()()det div dettV
t φφ φ∂

∇ = ∇
∂

 (2.11)

Plugging (2.11) into (2.8), we have:

()() () () ()

()() () () ()()

() () () ()(){ }

div det 1 det 1

div det 1 det 1 1

det div 1 1 1

t

t t

t t

H V t t f t t f
t t

V t t f f t f V

V t t f f t f V

φ

φ

φ

φ φ

φ φ

φ

∂ ∂
= ∇ + − + ∇ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂

= ∇ + − + ∇ − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ∇ + − + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (2.12)

By step 2, we have
()1tV V t t f= + −⎡ ⎤⎣ ⎦

() () ()

() () ()

1 1

1 1

t t

t t

divV divV t t f V t f

divV t t f divV V t f

⇒ = + − + − ∇⎡ ⎤⎣ ⎦

⇒ + − = − − ∇⎡ ⎤⎣ ⎦

 (2.13)

Plugging (2.13) into (2.12), we get:

() () ()(){ }

()()

det 1 1 1

det 1

t t
H divV V t f f t f V
t

divV f

φ

φ

∂
= ∇ − − ∇ + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂

= ∇ + −

 (2.14)

By step 1, plugging (2.2) into (2.14), we get

 ()()det 1 1 0H f f
t

φ∂
= ∇ − + − =

∂

Now, our remaining problem is how to find ()V ξ such that () ()div 1V fξ ξ= − in
Step 1. There are at least three different methods.

Method 1: Direct construction.
Method 2: Solve the Poisson equation 1fωΔ = − forω , then letV ω= ∇ .
The V found out by this way satisfies

() 1divV div fω ω= ∇ = Δ = − .

Method 3: Solve the div-curl system
1

0
divV f
curlV

= −⎧
⎨ =⎩

. Least-square finite element

method is a good way to solve it.
We will discuss method 2 in Section 3. Here let us see some details about method 1.
In 2D, we need to find a vector field ()1 2,V V V on [] []0,1 0,1Ω = × such

that div 1V f g= − = for a normalized monitor function 1f
Ω

=∫∫

Let () ()1

1 2 20
, ,

x
G x x g t x dt= ∫

 6

Define:
() () () ()

() () ()2

1 1 2 1 2 1 2

2 1 2 1 0

, , 1,
:

, ' 1, ,
x

V x x G x x h x G x
V

V x x h x G t dt

⎧ = −⎪
⎨

=⎪⎩ ∫
 (2.15)

where ()1h x is a function satisfying (0) 0h = , (1) 1h = and '(0) '(1) 0h h= = .

For example, we can take ()1() 1 cos
2

h t tπ= − . Then

() () () () ()

() () () () ()
()
()

1 2

2

1 2

1 2 1 2 1 0
1 2

1 2 1 2 1 2

1 2

1 2

, 1, ' 1,

, ' 1, ' 1,

,

, 1.

x x

x

divV V V

G x x h x G x h x G t dt
x x

g x x h x G x h x G x

g x x

f x x

= +

∂ ∂ ⎡ ⎤= − +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦∂ ∂

= − +

=

= −

∫

So the vector constructed by (2.15) satisfies the divergence equation.
In 3D, a vector field ()1 2 3, ,V V V V such that 1divV f= − can be defined by

() () () ()

() () () () ()()
() () () ()

1

2

3

1

1 1 2 3 1 2 3 1 1 1 2 3 10 0

1 1 1

2 1 2 3 1 1 2 3 1 2 2 1 2 3 1 20 0 0 0

1 1

3 1 2 3 1 2 1 2 3 1 2 30 0 0

, , , , , ,

: , , ' , , , ,

, , ' ' , , ,

x

x

x

V x x x g t x x dt h x g t x x dt

V V x x x h x g t t x dt dt h x g t t x dt dt

V x x x h x h x g t t x dt dt dt

⎧ = −⎪
⎪

= −⎨
⎪
⎪ =⎩

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

where ()1() 1 cos
2

h t tπ= − . We can check directly that

() () () () ()

() () () () () ()

()

()

1 2 31 2 3

1 1

1 2 3 1 1 2 3 1 1 1 2 3 10 0

1 1 1 1

1 2 1 2 3 1 2 1 2 1 2 3 1 20 0 0 0

1 2 3

1 2 3

, , ' , , ' , ,

' ' , , ' ' , ,

, ,

, , 1

x x xdivV V V V

g x x x h x g t x x dt h x g t x x dt

h x h x g t t x dt dt h x h x g t t x dt dt

g x x x

f x x x

= + +

= − +

− +

=

= −

∫ ∫

∫ ∫ ∫ ∫

Another interesting direct construction method is worked out by in [27].

 7

2.2 Version 2
This is another static version of the deformation method where the Jacobian

determinant is specified on the new grid ()φ ξ after adaptation.

Problem: Given g and f (properly normalized), find a transformation :φ ∂Ω→ ∂Ω such that
 () ()() ()() ,g J fξ φ ξ φ ξ ξ= ∈Ω

where g and f satisfy
1 1
f gΩ Ω
=∫ ∫ .

Note: The special case when g=1 was treated in [32]. The general case is proposed in [43]. The
material below is based on [43]. It is included here for self-completeness.

We can use the following three steps to find such a transformation.
Step 1 Compute V such that

1 1(())
() ()

div V
g f

ξ
ξ ξ

= − inΩ , and () 0,V nξ ξ⋅ = ∈∂Ωv .

Step 2 For each fixed nodeξ , solve the ODE

() ()(),
, , 0 1

t
t t t

t
ϕ ξ

η ϕ ξ
∂

= ≤ ≤
∂

with (),0 ,ϕ ξ ξ= where () ()

() () ()

, 1 11

V x
x t

t t
f x g x

η =
− −

Step 3 Define () (),1φ ξ ϕ ξ= , then φ will be the solution.

Now, we show thatφ satisfies (2.16).

Let () ()()() ()() () ()()
1 1, , 1

, ,
H t J t t t

f t g t
ξ ϕ ξ

ϕ ξ ϕ ξ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.17)

If we can show (2.17) is independent of t , i.e.

 0H
t

∂
=

∂
 (2.18)

then () ()() ()() ()1,0 ,0 1/
,0

H J g
g

ξ ϕ ξ ξ
ϕ ξ

= = and

() ()()() ()() ()()1,1 ,1 /
,1

H J J f
f

ξ ϕ ξ φ ξ
ϕ ξ

= =

() () () ()()0 ,0 ,1 1/ /H H H g J f gJ f
t

ξ ξ ξ φ ξ∂
= ⇒ = ⇒ = ⇒ =

∂

The proof of (2.18) is very similar to the proof of the first case [42].

2.3 Version 3 [31]

This is the version for real time (or time-accurate) adaptation.
Problem: Given a monitor function f(x,t), normalized so that

 8

1 , where is the volume of the domain
f
= Ω Ω∫ , find a transformation φ such that

 ()() ()(), , ,J t f t tφ ξ φ ξ= for 0t > , (2.19)
assuming that (2.19) is true at 0t = .
Such a transformation can be found by the following two steps.
Step 1: Find a vector field (),V tφ such that:

() () ()1div , ,
,

V t g t
t f t tφ φ φ

φ
∂ ∂

= − = −
∂ ∂

,

where ()() ()()
1, ,

, ,
g t t

f t t
φ ξ

φ ξ
= .

Step 2: Solve the following ordinary differential equation (ODE) for the transformation (), tφ ξ :

() () () (),

, , ,
t

f t V t t
t

φ ξ
φ φ η φ

∂
= =

∂
.

We now show that (,)tφ ξ satisfies (2.19).
In order to prove this, define H(ξ ,t) by

()() ()() ()
()

,
det , , ,

,
J t

H t g t t Jg
f t
φ

φ ξ φ ξ
φ

= ∇ = = .

If we can show 0H
t

∂
=

∂
, then we have constJH

f
= = .

Proof of 0H
t

∂
=

∂
:

()() ()(), ,
, ,

g t tH J g t t J
t t t

φ ξ
φ ξ

∂∂ ∂
= +

∂ ∂ ∂
 (2.20)

By Abel’s Lemma, since

 () () ()()()t t tξ ξ φ ξ φ ξ
φ φφ φ η φ∂ ∂ ⎛ ∂ ⎞⎛ ⎞ ⎛ ⎞∇ = ∇ = ∇ ∇ = ∇ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

, we get

() ()()()()

()()() () ()()()

() ()() () ()

det trace , det

div , det div , ,

, div , , , ,

,

J t
t t

t f t V t J

f t V t f t V t J

gf f V J
t

φ

φ φ

φ φ

φ

φ η φ φ

η φ φ φ φ

φ φ φ φ

∂ ∂
= ∇ = ∇ ∇

∂ ∂

= ∇ =

⎡ ⎤= + ∇⎣ ⎦

∂⎡ ⎤= − + ∇⎢ ⎥∂⎣ ⎦

 9

That is ,J gf f V J
t t φ

∂ ∂⎡ ⎤= − + ∇⎢ ⎥∂ ∂⎣ ⎦
 (2.21)

Also we have
(),

,
g t gg

t t tφ

φ φ∂ ∂ ∂
= ∇ +

∂ ∂ ∂
 (2.22)

Plugging (2.21) and (2.22) into (2.20), we get

()

, ,

, , (note: is used)

1, , (note: 1 is used)

, note: 1 () 0

H g gf f V Jg J g
t t t t

g gJ fg f V g g fV fV
t t t

g gJ f V g f g V g fg
t t f

J g f f g V fg fg g f f g

φ φ

φ φ

φ φ

φ φ

φ

φ

∂ ∂ ⎛ ∂ ∂ ⎞⎡ ⎤= − + ∇ + ∇ +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

∂ ∂ ∂⎡ ⎤= − + ∇ + ∇ + =⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂⎡ ⎤= − + ∇ + ∇ + = ⇒ =⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤= ∇ + ∇ = ⇒∇ = ∇ + ∇ =⎣ ⎦ ()is used

0,

0

J V= ⎡ ⎤⎣ ⎦

=

 The numerical implementations for all the three versions are similar. The method
for version1 also works for other versions after the right hand side of the divergence equation is
adjusted accordingly.

10

3. Reconstruction of Transformations
In this section we reconstruct differentiable transformations using a div-curl system.

The idea comes from the implementation of deformation method for finding transformations.
Notice that for all the three versions, the first step is to find a vector field by solving a
divergence equation with different right hand sides. After we add an equation of the curl of the
vector field, we can set up a div-curl system of equations. The least-square finite element
method is a good way to solve it [41]. Now let’s think in the opposite direction. For a
transformation given on a uniform initial grid we can calculate its divergence and curl at each
point. Thus we can set up a div-curl system of equations for each point. Solving this system on
the grid, we can reconstruct the given transformation. This idea can be used to reconstruct any
differentiable and invertible transformation.

This reconstruction method may apply to image registration, which is the process of
establishing point-by-point correspondence between two images of a scene. Sets of data
acquired by sampling the same scene or object at different times, or from different perspectives,
are in different coordinate systems. Image registration is the process of transforming the
different sets of data into one coordinate system. Registration is necessary in order to be able to
compare or integrate the data obtained from different measurements. This process is also needed
in various computer vision applications.
3.1 Div-curl System

We will first take a look at the div-curl system. Let D be an open bounded domain in
R3 with a piecewise smooth boundary 1 2Γ = Γ ΓU . Let (), ,x y z denote a point in D .

Let F Pi Qj Rk= + +
vv v

 be a vector field in D . Let nv be the unit outward normal vector on the
boundary. Then the 3D div-curl system of equations is:

1

2

0
0

divF in D
curlF in D
n F on
n F on

α

β

=⎧
⎪ =⎪
⎨

⋅ = Γ⎪
⎪ × = Γ⎩

v

v

v

 (3.1)

where 1 2 3i j kβ β β β= + +
vv v v

.
Our goal is to solve for , ,P Q R , for a total of three unknowns. But we have four scalar

equations in this system. So, it appears that this system is ‘over-determined’. Let us reconsider
this system by introducing a dummy variable θ as in [43], where 0θ ≡ in D and 0θ = on

1Γ so that the system becomes:

 1

1

2

0
0

0

divF in D
curlF in D

n F on
on

n F on

α

θ β

θ

=⎧
⎪∇ + =⎪⎪ ⋅ = Γ⎨
⎪ = Γ⎪
⎪ × = Γ⎩

v

v

v

 (3.2)

It can be shown that system (3.2) is equivalent to system (3.1). Detailed proof can be
found in [41]. Notice that system (3.2) is a system with four unknowns and four equations.

In Cartesian coordinates, we have:

11

R Q P R Q Pcurl F i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

vv v

i j k
x y z
θ θ θθ ∂ ∂ ∂

∇ = + +
∂ ∂ ∂

vv v

P Q Rdiv F
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

So system (3.2) can be written as:

1

2

3

R Q
x y z

P R
y z x

Q P
z x y
P Q R
x y z

θ β

θ β

θ β

α

∂ ∂ ∂⎧ + − =⎪ ∂ ∂ ∂⎪
∂ ∂ ∂⎪ + − =⎪ ∂ ∂ ∂⎪

⎨∂ ∂ ∂⎪ + − =
⎪ ∂ ∂ ∂
⎪
∂ ∂ ∂⎪ + + =

⎪ ∂ ∂ ∂⎩

 (3.3)

Define

P
Q

F
R
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

% and

1

2

3

β
β

β
β
α

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

% , then this system can be written in a matrix form:

0 1 2 3
F F FA F A A A
x y z

β∂ ∂ ∂
+ + + =

∂ ∂ ∂

% % %
%% where

0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

A

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

,

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

, 3

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

A

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

,

For any nonzero triplets (), ,x y z , the characteristic polynomial for system (3.3) is

()22 2 2
1 2 3

0
0

det() det 0
0

0

z y x
z x y

A x A y A z x y z
y x z

x y z

−⎛ ⎞
⎜ ⎟−⎜ ⎟+ + = = + + ≠
⎜ ⎟−
⎜ ⎟
⎝ ⎠

12

Thus, system is elliptic and properly determined.
Least-square finite element method is a good way to solve the div-curl system. Detailed analysis
can be found in [41]. The numerical implementation procedures can be found in [39].
3.2 Least Squares FEM

Let us consider the linear boundary-value problem:

 Au f= in Ω
 Bu g= on Γ (3.4)

where 0
1

dn

i
i i

uAu A A u
x=

∂
= +

∂∑ (2dn = for 2D, 3dn = for 3D). B is a boundary operator. f and

g are given vector-valued functions. u is a vector with m unknown functions of ()1, dnx xLx .

1

2 ,

m

u
u

u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

1

2 ,

dn

f
f

f

f

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

1

2

dn

g
g

g

g

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

Define the residual as R Au f= − , then if 0R = we get the exact solution for u . The least-
square finite element method is to minimize R in a least-square sense, that is, to minimize the
following functional:

() ()
22

0
I v R Av f dω

Ω
= = −∫ .

A necessary condition for u to minimize ()I v is:

()
0

lim 0
t

d I u tv
dt→

+ = .

Since

() ()

() () ()() () ()

2

2 2 2 2 2 2 2 ,

I u tv A u tv f d

Au Av t f Au Av t Av ft Au f d

ω

ω

Ω

Ω

+ = + −⎡ ⎤⎣ ⎦

⎡ ⎤= + + + − −⎣ ⎦

∫

∫

we have

() () ()() ()

()() ()

2

0 0
lim lim 2

2

0.

t t

d I u tv Av t Au Av Av f d
dt

Au Av Av f d

ω

ω

Ω→ →

Ω

⎡ ⎤+ = + −⎣ ⎦

= −⎡ ⎤⎣ ⎦

=

∫

∫

Thus
()() ()Au Av d Av f dω ω

Ω Ω
=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ .

13

That is
 () (), ,Au Av f Av= . (3.5)

This is the variational principle of equation (3.4).
In finite element, we discretize the domain into elements and then introduce finite

element basis. Let jϕ be the element shape function, we write the expansion of the unknown
variables in each element as

 () ()

1

2

1

nN
e
h j

j

m j

u
u

u

u

ϕ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
L

x x (3.6)

where nN is the number of nodes for one element.
Introducing (3.6) into (3.5) we get a linear system of algebraic equations:

 KU F= (3.7)
Here

() ()1 2 1 2, , , , , ,
n n

T

e N NK A A A A A A dϕ ϕ ϕ ϕ ϕ ϕ
Ω

= Ω∫ L L

()1 2, , ,
n

T

e NF A A A fdϕ ϕ ϕ
Ω

= Ω∫ L

are the element matrices used to assemble the global matrix K and F .
3.3 Solving the Div-Curl System

Let’s take a look at the definition of divergence and curl of a vector field first.
If Pi Qj Rk= + +

vv v
V is a vector field on 3�

33and the partial derivatives of (), ,P x y z ,

(), ,Q x y z and (), ,R x y z all exist, then

P Q Rdiv
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

V

R Q P R Q Pcurl i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

vv v
V

In 2D, all the terms related to R and z vanish. So we have
P Qdiv
x y

∂ ∂
= +
∂ ∂

V

Q Pcurl k
x y

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

v
V , where k

v
 is the unit outward normal vector, usually denoted

as nv .
The matrix form of the div-curl system can be written as:

14

1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

P Q R
P x y zP P
y R Qx z

Q Q Q y z
x y z P R
R RR z x
x zy

∂ ∂ ∂
+ +

⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ∂ ∂ ∂ ∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟− ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∂⎝ ⎠ Q P
x y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

In 3D, linear hexahedral elements are used and the finite element approximation at each
hexahedral is given by

()
8

1

i
e

h i i
i

i

p
V x q

r
ϕ

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

where , ,i i ip q r are the nodal values at the thi node of the hexahedral element and iϕ ’s are the
shape functions.
The element matrices used to assemble the algebraic system KV F= are

() ()

() ()

1 1 1 8

8 1 8 8

e

T T

e
T T

A A A A
K d

A A A A

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫
L

M O M

L

()

()

1

8

e

T

e
T

A
F d

A

ϕ

ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ M

f

f

where
0

for 1,2,...,8.
0

0

i i i

i i

i
i i

i i

x y z

z yA i

z x

y x

ϕ ϕ ϕ

ϕ ϕ

ϕ
ϕ ϕ

ϕ ϕ

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟

∂ ∂⎜ ⎟
−⎜ ⎟∂ ∂⎜ ⎟= =

⎜ ⎟∂ ∂
−⎜ ⎟∂ ∂⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

15

and

P Q R
x y z

R Q
y z
P R
z x
Q P
x y

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂⎜ ⎟

−⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟∂ ∂

−⎜ ⎟∂ ∂⎜ ⎟
∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

f = , calculated from the given transformation.

4. Numerical Examples
W set the position for the given transformation as (), ,xn i j k , (), ,yn i j k , (), ,zn i j k ,

and the array for our initial grid as (), ,x i j k , (), ,y i j k , (), ,z i j k , then

() ()
() ()

1, , 1, ,
1, , 1, ,

xn i j k xn i j kP
x x i j k x i j k

+ − −∂
=

∂ + − −

() ()
() ()

, 1, , 1,
, 1, , 1,

xn i j k xn i j kP
y y i j k y i j k

+ − −∂
=

∂ + − −

() ()
() ()

, , 1 , , 1
, , 1 , , 1

xn i j k xn i j kP
z z i j k z i j k

+ − −∂
=

∂ + − −

() ()
() ()

1, , 1, ,
1, , 1, ,

yn i j k yn i j kQ
x x i j k x i j k

+ − −∂
=

∂ + − −

() ()
() ()

, 1, , 1,
, 1, , 1,

yn i j k yn i j kQ
y y i j k y i j k

+ − −∂
=

∂ + − −

() ()
() ()

, , 1 , , 1
, , 1 , , 1

yn i j k yn i j kQ
z z i j k z i j k

+ − −∂
=

∂ + − −

() ()
() ()

1, , 1, ,
1, , 1, ,

zn i j k zn i j kR
x x i j k x i j k

+ − −∂
=

∂ + − −

() ()
() ()

, 1, , 1,
, 1, , 1,

zn i j k zn i j kR
y y i j k y i j k

+ − −∂
=

∂ + − −

() ()
() ()

, , 1 , , 1
, , 1 , , 1

zn i j k zn i j kR
z z i j k z i j k

+ − −∂
=

∂ + − −

Following are some of the numerical examples. Let the coordinates of the new position of node

Xi be XNi. We define Error = max () () ()2 2 2
i i i i i i i iXN X xn x yn y zn z− = − + − + − ,

i = 1,…, nmax. Error is the maximal distance between each pair of corresponding nodes of the
given and the reconstructed transformations. nmax is the maximum number of nodes. Error is
used to measure the accuracy of the reconstruction method.

16

The grid size of the following examples is 64 64× over the unit square [] []0,1 0,1× for

2D and 40 40 40× × over the unit cube [] [] []0,1 0,1 0,1× × for 3D. That means the distance

between adjacent points in the uniform grid is
1 =0.015625
64

 for 2D and
1 =0.025
40

 for 3D.

Example 1: A transformation from the uniform Cartesian grid (Figure 1.1) to a grid
stretched to a rectangle and refined around an arc is reconstructed. Figure 1.2 shows the
intermediate step at half of the time steps. The final result is shown in Figure 1.3.

Example 2: A transformation on the 3D Cartesian grid from a unit cube is shown in
Figure 2.1 by a grid adapted to a sphere. The reconstructed transformation is shown in Figure
2.2. The maximum error in is Error = 5.225×10-3, which is compared favorably to the grid size
1 =0.025
40

= 25×10-3.

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.1 The Given Transformation in Example 1

17

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.2 Reconstruction at time step 5t =

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.3 Reconstruction at time step 1 0t =

18

0

0.2

0.4

0.6

0.8

1

V
3

0

0.2

0.4

0.6

0.8

1

V1

0

0.2

0.4

0.6

0.8

1

V2

X Y

Z

Figure 2.1 The Given Transformation in Example 2: A cube with a ball inside (cutaway plot)

0

0.2

0.4

0.6

0.8

1

Z

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

X Y

Z

Figure 2.2 Reconstruction of Figure 2.1 for Example 2

19

5. Conclusions
In the first part of this paper, we describe all three versions of the deformation method

for adaptive grid generation. For a monitor function f constructed according to desired grid size
distribution, we can construct a transformation with Jacobian determinant J f= .

The main result of the paper is in the second part. We show that one can reconstruct
any given differentiable, invertible transformation by its divergence and curl. The least squares
finite element method is used to solve the div-curl system. Numerical examples in both two and
three dimensions are presented. The examples show excellent accuracy of the method.

20

References
[1] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation, North-

Holland, Amsterdam, 1985.
[2] P. Knupp and S. Steinberg, The Fundamentals of Grid Generation, CRC Press, 1993.
[3] G. Carey, Computational Grid Generation, Adaptation and Solution Strategies, Taylor and

Francis, 1997.
[4] J. F. Thompson, B. Soni, N. Weatherill, Handbook of Grid Generation, CRC Press, 1998.
[5] J. Thompson, A reflection on grid generation in the 90s: trends, needs and influences, 5th

International Conference on Numerical Grid Generation in Computational Field
Simulations, Mississippi State University, pp.1029-1110, 1996.

[6] B. Hamann, R. J. Moorhead, A survey of grid generation methodologies and scientific
visualization efforts, Chapter 3 in Scientific Visualization: Overviews, Methodologies, and
Techniques, pp. 59-101, 1997.

[7] D. Arney, J. Flaherty, An adaptive mesh-moving and local refinement method for time-
dependent partial differential equations, ACM Transaction in Mathematical Software, 16,
1990.

[8] K. Miller, R. Miller, Moving Finite Elements I, SIAM J. Numer. Anal. 18, 1019-1032, 1981.
[9] K. Miller, Moving Finite Elements II, SIAM J. Numer. Anal. 18, 1033-1057, 1981.
[10] N. Carlson, K. Miller, Design and application of a gradient-weighted moving finite

element code, Part I, in 1D, SIAM J. Sci. Comput. 19, 728-765, 1998.
[11] N. Carlson, K. Miller, Design and application of a gradient-weighted moving finite

element code, Part II, in 2D, SIAM J. Sci. Comput. 19, 766-798, 1998.
[12] M. Baines, Moving finite elements, Oxford University Press, New York, 1994.
[13] J. Castillo, Mathematical Aspects of Numerical Grid Generation, Society for Industrial

and Applied Mathematics, 1991.
[14] W. Cao, W. Huang and R. D. Russell, Approaches for Generating Moving Adaptive

Meshes: Location versus Velocity, Appl. Num. Math., 47 (2003), 121-138.
[15] E. A. Dorfi and L. Drury, Simple adaptive grids for 1D initial value problems, J. Comput.

Phys. 69, 175-195, 1987.
[16] W. Huang, Y. Ren and R.D. Russell, Moving mesh partial differential equations

(MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal. 31, 709-730,
1994.

[17] W. Cao, W. Huang and R. D. Russell, An r-adaptive finite element method based upon
moving mesh PDEs, Journal of Computational physics, 170, 871-892, 2001.

[18] R. Li, T. Tang, and P. Zhang, A moving mesh finite element algorithm for singular
problems in two and three space dimensions, J. Comput. Physics, 177, 365-393, 2002.

[19] R. Li, T, Tang, and P. Zhang, Moving mesh methods in multiple dimensions base on
harmonic maps, J. Comput. Physics, 170, 562-588, 2001.

[20] Y. Di, R. Li, T. Tang, and P. Zhang, Moving mesh finite element methods for the
incompressible Navier-Stokes equations, SIAM, J. Sci. Comput., 26, 1036-1056, 2005.

[21] D. Hawken, J. Gottlieb and J. Hansen, Review of some adaptive node-movement
techniques in finite-element and finite-difference solutions of partial differential equations,
J. Comput. Physics, 95, 254-302, 1991.

[22] A. van Dam, P. A. Zegeling, A robust moving mesh finite volume method applied to 1D
Hyperbolic conservation laws from magnetohydrodynamics, J. Comput. Physics, 2006.

[23] W. Cao, W. Huang and R.D. Russell, A study of monitor functions for two-dimensional
adaptive mesh generation, SIAM J. Sci. Comput. 20, 1978-1994, 1999.

21

[24] H. M. Tsai, A. S. F. Wong, J. Cai, Y. Zhu, and F. Liu, Unsteady flow calculations with a
parallel multiblock moving mesh algorithm, AIAA Journal, 39, No. 6, 2001.

[25] Thomas J.R. Hughes and Jerrold E. Marsden, A short course in fluid mechanics:
mathematics lectures series 6, Publish or Perish, Inc. 1976

[26] J. Moser, Volume elements of a Riemann Manifold, Trans AMS, 120, 1965
[27] G. Liao and J. Su, Grid generation via deformation, Appl. Math. Lett., 5, 1992.
[28] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal., 44, 1992.
[29] P. B. Bochev, G. Liao, and G. C. de la Pena. Analysis and computation of adaptive

moving grids by deformation. Numerical Methods for Partial Differential Equations, 12,
1996.

[30] B. Semper and G. Liao, “A moving grid finite-element method using grid deformation”,
Numer. Meth. PDE, 11:603, 1995.

[31] G. Liao, T. Pan, and J. Su, “Numerical Grid Generator Based on Moser’s Deformation
Method”, Numer. Meth. Part. Diff. Eq. 10, 21 (1994).

[32] G. Liao, G. de la Pena, “A deformation method for moving grid generation”,
proceedings, 8thInternational Meshing Roundtable, pp. 155-162. South Lake Tahoe, CA,
October, (1999).

[33] D. Fleitas, J. Xue, J. Liu and G. Liao, Least-squares finite element adaptive grid
deformation in a non-linear time dependent problem. In Advances in applied mathematics
(2004 SIAM GATORS), Gainsville, Florida, 2004.

[34] F. Liu, S. Ji, and G. Liao, An adaptive grid method and its application to steady Euler
flow calculations, SIAM J. Sci. Comput. 20, 811-825, 1998.

[35] X. Han, C. Xu, and J. L. Prince, A 2D Moving Grid Geometric Deformable Model, IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR2003) ,
June, 2003, pp. I: 153-160.

[36] X. Cai, D. Fleitas, B. Jiang, and G. Liao, Adaptive grid generation based on least-squares
finite-element method. Computers and Mathematics with Applications, 48, 2004.

[37] J. Xue, Moving grids by the deformation method, Dissertation, 2004.
[38] W. Morris, A meshfree adaptive numerical method, Dissertaion, 2004.
[39] D. Fleitas, The least-square finite element method for grid deformation and meshfree

applications, Dissertation, 2005.
[40] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless Methods: an

overview and recent developments, Computer methods in applied mechanics and
engineering, 139, 3-47, 1996.

[41] B. Jiang, The Least-Squares Finite Element Method: Theory and Applications in
computational Fluid Dynamics and Electromagnetics. Springer, Berlin, 1998.

[42] M. Grajewski, M. Koster, S. Kilian and S. Turek, Numerical Analysis and Practical
Aspects of a Robust and Efficient Grid Deformation Method in the Finite Element Context,
preprint, 2005.

[43] C. L. Chang and M. Gunzburger, A finite element method for first order elliptic systems
in three dimensions. Appl. Math. Comput. 23, 135-146, 1987

