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Abstract: In this paper, we analyze a type of finite-difference schemes, a newly 

developed Weighted Compact Scheme (WCS) developed by L. Jiang L, H. 

Shan, C. Liu, [Weight Compact Scheme for Shock Capturing, International 

Journal of Computational Fluid Dynamics, 15, pp.147-155 (2001)], in terms of 

order of accuracy and numerical dissipation and dispersion. Further results of 

numerical implementation have indicated their effectiveness in approximating 

shock discontinuities.  The scheme is shown to be of high order of accuracy in 

regions where the solutions are smooth; while in regions of shock, they are of 

lower orders but are capable to overcome numerical oscillations with the help of 

weights. The scheme is compactable and complements with the famous WENO 

scheme. Our analysis has shown the plausibility that the WCS and WENO 

schemes can work together to provide a numerical method to efficiently capture 

discontinuities as well as other small-scale features.  
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1. Introduction.  

 

The central issue of Computational Fluid Dynamics has been around the development 

of numerical methods for calculating flow fields that are governed in general by the 

Navier-Stokes system. One of the difficult problems with numerical solution is the 

capturing of shocks that are discontinuity or mathematical singularity in the partial 

differential equations. In these regions, there is no classical solution for the equation 

and bounded derivatives of the solutions do not exist.  Only weak solutions in an 

integration form of the equations can be obtained. In the problems of high speed or 

turbulent flows, the shocks can be developed over the time course because the 

dominant mode of the flow, described by Euler equation, is non-linear and 

hyperbolic.  
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In the existing mathematical and computational physics literature, many finite 

difference schemes such as Godunov (1969) [1], Roe (1981) [2], MUSCL (Van Leer, 

1979) [3], TVD (Harten, 1983) [4], ENO (Harten et al, 1987 [5]; Shu et al, 1988 [6], 

1989 [7]) and WENO (Liu et al, 1994 [8]; Jiang et al, 1996 [9]), have achieved great 

success in capturing the shocks sharply.  The basic idea proposed in ENO (Harten et 

al, 1987 [5]) and WENO (Jiang et al, 1996 [9]) schemes is to avoid the stencil 

containing a shock. ENO chooses the smoothest stencil from several candidates to 

calculate the derivatives. WENO controls the contributions of different stencils 

according to their smoothness. In this way, the derivative at a certain grid point, 

especially one near the shock, is dependent on a very limited number of grid points. 

The local dependency here is favorable for shock capturing and helps obtaining the 

non-oscillatory property. The success of ENO and WENO schemes indicates that the 

local dependency is critical for shock capturing. 

 

Recent research directions further require methods with fine resolution for small 

length scales. Such feature is required in studying physics phenomena in flow 

transition and turbulence processes that are very sensitive to any artificial numerical 

dissipation. High order compact scheme (Lele, 1992 [10]; Visbal, 2002 [11]) is more 

appropriate for simulation in this area because it is central and non-dissipative with 

high order accuracy and high resolution. Due to the usage of derivatives, compact 

schemes usually give us a tri-diagonal or penta-diagonal system. Although the tri-

diagonal matrix is sparse, the inverse of a tri-diagonal matrix is dense, which means 

the derivative at a certain grid point depends upon all the grid points along a grid line. 

The success of compact schemes indicates that the global dependency is very 

important for high resolution. However, the global dependency is not so applicable 

for shock capturing. 

 

To balance the benefit and shortcoming of both compact scheme and WENO, 

Weighted Compact Scheme (WCS) was recently developed (Jiang et al, 2001 [12]) 

by introducing the idea of WENO scheme to the standard compact schemes which 

uses weights for nearby several candidates. In smooth regions where shocks are not 

present, the scheme is identical to standard compact scheme in [10-11]. The building 

block for each candidate is a Lagrange polynomial in WENO, but is Hermite in WCS. 

Therefore WCS achieves a higher accuracy with same stencil width.  While in shock 

region, WCS tries to minimize its influence that the stencil containing a shock is still 

used with a smaller weight leading to the global dependency. The numerical tests 

indicated that WCS works fine in convection equation and Burger’s equation [12]. 

 

The order of accuracy is an important feature for a finite difference scheme. For a 

higher order scheme, the requirement of grid number can be substantially less that 

that of a lower order. The order of accuracy is one of the measuring criterions we use 

for improving the numerical method. Through investigating the error terms, we can 
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further have a clear understanding about the numerical dissipation and dispersion 

generated by the scheme.  

 

In this note, we perform an error analysis for Weighted Compact Scheme. The 

analysis will provide a way to optimize the simulation results for a wide range of 

fluid problems. In section 2, we briefly introduce the scheme formulations, in Section 

3, we study the error analysis; and in Section 4 we will illustrate numerical examples 

of WCS scheme in comparison with other schemes such as Compact Schemes and 

WENO scheme.  

 

Our discussion only concerns with one-dimension scheme, and higher dimension 

cases will be reported in a forthcoming publication.    

 

2. Finite Difference Scheme Formulations 
 

For 1-D conservation law: 

0)),((),( =+ txuFtxu xt ,                                  (2.1) 

when a conservative approximation to the spatial derivative is applied, a semi-discrete 

conservative form of eq. (2.1) is described as follows: 
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Note that F is the original function, but F̂ is the flux defined by the above integration. Eq. 

(2.2) is an exact expression of eq. (2.1) but F̂  is different from F. Let H be the primitive 
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H usually is to be calculated on a discrete data set. The numerical flux F̂  at the cell 

interfaces is the derivative of its primitive function H. i.e.: 
'

)2/1()2/1(
ˆ

++ = jj HF                       

(2.4)      

 

Our study is closely related to WENO schemes, particularly its weight distribution. Therefore 

we start with the standard WENO setting.  

 

WENO setting: 

In order to get a second order approximation for 
2

1
ˆ

−j
F  , we can use three different 

candidates (Figure 1): 1230 ,,: −−− jjj FFFE ; jjj FFFE ,,: 121 −− ; 112 ,,: +− jjj FFFE  
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                                              Figure 1. Fifth order WENO Scheme diagram 
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Using Taylor expansion, we can verify that eq. (2.6) has a 5
th

 order truncation error.  
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Our weighted compact scheme goes to a different direction from the WENO scheme, 

however we will use the same weight function, as numerical experiments indicated 

that WENO weights provides most stability out of several choices, the theoretical 

base of such is under investigation.  
 

WCS setting:  
The high order compact scheme also uses three candidates (Figure 2):  

2/12/12/30 ,,: +−− jjj HHHE , 2/32/12/11 ,,: ++− jjj HHHE , and 2/52/32/12 ,,: +++ jjj HHHE  

 
                        Figure 2.  Sixth Order Compact Scheme diagram 
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which is a standard sixth order compact scheme.  Similarly, for Weighted Compact 

Scheme [12], using the same weights as in WENO scheme, we also derive  
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3. Error Analysis  

 

We now study the order of accuracy of WCS schemes. 
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Substitute eq. (2.13) to the above implicit equations, we will get explicit formula: 
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The weighted compact scheme uses three candidates (Figure 2): '
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Let us solve the equation  
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Then we assume  



 11 

).(
10

8
)(

~
)(

5

9

),(
10

1
)(

~
)(

5

9

),(
10

1
)(

~
)(

5

9

44

1

4

11

44

2

4

22

44

0

4

00

xOxOCxOC

xOxOCxOC

xOxOCxOC

∆+=∆+=∆+•=

∆+=∆+=∆+•=

∆+=∆+=∆+•=

ω

ω

ω

 

Therefore the equation (2.18) becomes:  
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We denote )(ˆ xRFF =−  the residual term. By substituting into eq. (2.19), we obtain 

)(ˆ xRFF =− = )( 6xO ∆  which states that order of accuracy of WCS will also be 6, 

the same of that in eq. (2.13).  

 

Section 4.  The weight functions 

 

We now proceed to analyze the weight functions for WCS. 

 
Proposition 4.1 .  Assume eq (2.1), a 1-D conservation law has a nonlinear function F 

that is differentiable up to 7
th
 order and ),( txu is a generalized solution of  eq. (2.1). Then 

for any given fixed bounded domain
1RD ⊂ and ∞<≤< Tt0  there exist 0)(00 >= uhh  

such that for any mesh size 0hx <∆ , WCS or WENO scheme gives a weight function 

)( 4xOcii ∆+=ω for regions where ),( txu and its derivatives (up to 4
th

 order) are 

bounded. Otherwise, )1(Oi =ω . 

Proof :  
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because of the fact 1210 =++ CCC . 

 

Finally we derive 
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If 0>ε  is a fixed positive constant, and F is smooth in the sense that all its 

derivatives are bounded, then the weights )( 4xOCii ∆+=ω .  This is in fact a 

stronger result than the result of [9] that ).( 2xOCii ∆+=ω  

 

5. Numerical results 

 
We first test WCS scheme on a 1-D linear wave equation with discontinuous initial function: 

0=+ xt uu ,     ( )


 ≤≤

=
otherwise

xif
xu

5.0

4.01.00.1
0, .        (3.1)                                                                

The calculation stops at 3.0=t  and the solutions are illustrated in figure 3. The results 

indicate that standard compact scheme is not suitable for shocks while both WCS scheme 

(labeled UWCNC) and WENO scheme (Labeled WENO-5) work. Furthermore, WCS has 

less dissipation than WENO near shocks which means a sharper transition is obtained. 
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Figure 1. Numerical test over linear wave equation. 
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To further test the capability of the new scheme in both shock capturing and resolution, we 

applied it to the 1-D problem of shock/entropy wave interaction. In this case, 1D Euler 

equations: 

                           0=
∂

∂
+

∂

∂

x

F

t

U
                                                                                               

(3.2) 

        ( )T
EuU ,, ρρ= ;  ( )( )T

pEupuF ++= ,, ρρ  

are solved with the following initial conditions: 

( )
( )
( )



−≥+

−<
=

.41,0),5sin(2.01

;4,33333.10,629369.2,857143.3
,,

0
xx

x
puρ                                                

(3.3) 

Figure 2 (a) and (b) depict the solutions of the density distribution respectively. On the 

coarser grid with grid number of N=200, our new scheme (labeled 200 LJK) shows much 

better resolution for small length scales than the 5
th
 order WENO (labeled 200 WENO). 

Apparently, there is an order difference in resolution between our 6
th
 order WCS scheme and 

the 5
th
 order scheme. The numerical results by our WCS scheme with 200 grid points are 

even comparable with the 5
th
 order WENO scheme (labeled 200 LJK)  with 1600 grid points 

(labeled 1600 WENO) (Figures 2 (a)  & (b)). In addition, the WCS captures the shock in a 

much sharper way for all shocks. On the shocks developed by the sinuous waves, only one 

grid point was found on the shock (Figure 2 (a)). Again, Figure 3 shows the smoothness 

measured defined to be a combination of 0IS , 1IS  and 2IS to detect the shock. Figure 3 

shows the main shock is well captured with smoothness 1=α  (where smooth points are 

typically have smoothness 0=α ) and the shocks developed by the sine function are also 

well captured. The smoothness measured on the coarser grid (N=200 and 400) and finer grid 

(N=1600) are quite consistent. 

 
                                        (a) 

 

  
                                   (b) 

Figure 2 Numerical test for 1D shock-entropy wave interaction problem, t=1.8, N=200 
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      Figure 3 Smoothness for 1D shock-entropy problem, t=2, N=200, 400, 1600     

 

 

In summary, we have shown both WENO and WCS are good schemes in dealing with 

shock but they have different strength. Currently we are developing a way to take 

advantages of both schemes by either averaging both or using one as a filter of 

another.   
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