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Abstract

The Generalized Minimal Residual method (GMRES) is often used to solve a non-
symmetric linear system Ax = b. But its convergence analysis is a rather difficult task in
general. A commonly used approach is to diagonalize A = XΛX−1 and then separate the
study of GMRES convergence behavior into optimizing the condition number of X and
a polynomial minimization problem over A’s spectrum. This artificial separation could
greatly overestimate GMRES residuals and likely yields error bounds that are too far
from the actual ones. On the other hand, considering the effects of both A’s spectrum
and the conditioning of X at the same time poses a difficult challenge, perhaps impossible
to deal with in general but only possible for certain particular linear systems. This paper
will do so for a (nonsymmetric) tridiagonal Toeplitz system. Sharp error bounds on and
sometimes exact expressions for residuals are obtained. These expressions and/or bounds
are in terms of the three parameters that define A and Chebyshev polynomials of the
first kind.

1 Introduction

The Generalized Minimal Residual method (GMRES) is often used to solve a nonsymmetric
linear system Ax = b. The basic idea is to seek approximate solutions, optimal in certain
sense, from the so-called Krylov subspaces. Specifically, the kth approximation xk is sought
so that the kth residual rk = b−Axk satisfies [20] (without loss of generality, we take initially
x0 = 0 and thus r0 = b.)

‖rk‖2 = min
y∈Kk

‖b−Ay‖2,

where the kth Krylov subspace Kk ≡ Kk(A, b) of A on b is defined as

Kk ≡ Kk(A, b) def= span{b, Ab, . . . , Ak−1b}, (1.1)

and generic norm ‖ · ‖2 is the usual `2 norm of a vector or the spectral norm of a matrix.
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This paper is concerned with the convergence analysis of GMRES on linear system Ax = b
whose coefficient matrix A is a (nonsymmetric) tridiagonal Toeplitz coefficient matrix:

A =




λ µ

ν
. . . . . .
. . . . . . µ

ν λ




,

where λ, µ, ν are assumed nonzero and possibly complex. Linear systems as such have been
studied quite extensively in the past. For the nonsymmetric case, i.e., µ 6= ν as we are
interested here, most update-to-date and detailed studies are due to Ernst [9] and Liesen
and Strakoš [17]. Both papers, motivated to better understand the convergence behavior of
GMRES on a convection-diffusion model problem [18], established various bounds on residual
ratios. Ernst’s bounds to which we shall return are comparable to ours, while most results in
Liesen and Strakoš [17] are of qualitative nature, intended to explain GMRES convergence
behaviors for such linear systems. In particular, Liesen and Strakoš showed that GMRES for
tiny |µ| behaves much like GMRES after setting µ to 0.

Throughout this paper, exact arithmetic is assumed, A is N -by-N , and k is GMRES
iteration index. Since in exact arithmetic GMRES computes the exact solution in at most
N steps, rN = 0. For this reason, we restrict k < N at all times. This restriction is needed
to interpret our later results concerning (worst) asymptotic speed in terms of certain limits
of ‖rk‖1/k as k →∞.

Our first main contribution in this paper is the following error bound (Theorem 2.1)

‖rk‖2

‖r0‖2
≤
√

k + 1




k∑

j=0

ζ2j |Tj(τ)|2


−1/2

, (1.2)

where Tj(t) is the jth Chebyshev polynomial of the first kind, and

ξ = −
√

µν

ν
, τ =

λ

2
√

µν
, ζ = min{|ξ|, |ξ|−1}.

We will also prove that this upper bound is nearly achieved by b = e1 (the first column of
the identity matrix) when |ξ| ≤ 1 or by b = eN (the last column of the identity matrix) when
|ξ| ≥ 1. By “nearly achieved”, we mean it is within a factor about at most (k + 1)3/2 of the
exact residual ratios.

Our second main contribution is about the worst asymptotic speed of ‖rk‖2 among all
possible r0. It is proven that (Theorem 2.2)

lim
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

= min
{
(ζρ)−1, 1

}
, (1.3)

where ρ = max
{∣∣∣τ +

√
τ2 − 1

∣∣∣ ,
∣∣∣τ −

√
τ2 − 1

∣∣∣
}

. Technically speaking,
[
supr0

‖rk‖2‖r0‖2

]1/k

is not a sequence because of the freedom in N (except N > k), namely for each N > k it
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renders a number. Nonetheless, the limit in (1.3) can be meaningfully interpreted as follows:
for any given ε > 0, there exists a positive integer K such that

∣∣∣∣∣
[
sup
r0

‖rk‖2

‖r0‖2

]1/k

−min
{
(ζρ)−1, 1

}
∣∣∣∣∣ < ε for all N > k ≥ K.

This interpretation will be adopted to understand similar limits later in this paper. In the
case when r0 is given, supr0

will be dropped. A related work that also studied asymptotic
speed of convergence but for the conjugate gradient method (CG) and special right-hand
sides and λ = 2 and µ = ν = −1 is [2], where that N/k remains constant is required as
k →∞.

A by-product of (1.3) is that the worst asymptotic speed can be separated into the factor
ζ−1 ≥ 1 contributed by A’s departure from normality and the factor ρ−1 contributed by
A’s eigenvalue distribution. Take, for example, λ = 0.5, µ = −0.3, and ν = 0.7 which was
used in [4, p.562] to explain the effect of nonnormality on GMRES convergence. We have
(ζρ)−1 = 0.90672, whereas in [4, p.562] it is implied ‖rk‖2/‖r0‖2 ≤ (0.913)k for N = 50,
which is rather good, considering that N = 50 is rather small.

Ernst [9], in our notation, obtained the following inequality: if A’s field of values does
not contain the origin, then

‖rk‖2

‖r0‖2
≤

(
|ξ|k + |ξ|−k

) ρ̃k

1− ρ̃2k
, (1.4)

where ρ̃ = max
{∣∣∣τ̃ +

√
τ̃2 − 1

∣∣∣ ,
∣∣∣τ̃ −

√
τ̃2 − 1

∣∣∣
}

and τ̃ =
[
cos π

N+1

]−1
τ . Our bound (1.2)

is comparable to Ernst’s bound for large N . This can be seen by noting that for N large
enough, τ̃ ≈ τ and ρ̃ ≈ ρ, and that Tj(τ) ≈ 1

2ρj when ρ > 1 and |ζ|−k ≤ |ξ|k + |ξ|−k ≤ 2|ζ|−k.
Ernst’s bound also leads to

lim sup
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

≤ min
{
(ζρ)−1, 1

}
. (1.5)

In differentiating our contributions here from Ernst’s, we use a different technique to arrive
at (1.2) and (1.3). While our approach is not as elegant as Ernst’s which was based on A’s
field of values (see also [5]), it allows us to establish both lower and upper bounds on relative
residuals for special right-hand sides to conclude that our bound is nearly achieved. Also
(1.3) is an equality while only an inequality (1.5) can be deduced from Ernst’s bound and
approach.

We also obtain residual bounds and exact expressions especially for right-hand sides b =
e1 and b = eN (Theorems 2.3 and 2.4). They suggest, besides the sharpness of (1.2), an
interesting GMRES convergence behavior. For b = e1, that |ξ| > 1 speeds up GMRES
convergence, and in fact ‖rk‖2 is roughly proportional to |ξ|−k. So the bigger the |ξ| is,
the faster the convergence will be. Note as |ξ| gets bigger, A gets further away from a
normal matrix. Thus, loosely speaking, the nonnormality contributes to the convergence
rate in the positive way. Nonetheless this does not contradict our usual perception that high
nonnormality is bad for GMRES if the worst behavior of GMRES among all b is considered.
This mystery can be best explained by looking at the extreme case: |ξ| = ∞, i.e., ν = 0,
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for which b = e1 is an eigenvector (and convergence occurs in just one step). In general for
ν 6= 0, as |ξ| gets bigger and bigger, roughly speaking b = e1 comes closer and closer to A’s
invariant subspaces of lower dimensions and consequently speedier convergence is witnessed.
Similar comments apply to the case when b = eN .

The rest of this paper is organized as follows. We state our main results in Section 2.
Tedious proofs that rely on residual reformulation involving rectangular Vandermonde matri-
ces and complicated analysis will be presented separately in Section 3. Exact residual norm
formulas for two special right-hand sides b = e1 and eN are established in Section 4. Finally
in Section 5 we present our concluding remarks.

Notation. Throughout this paper, Kn×m is the set of all n×m matrices with entries in
K, where K is C (the set of complex numbers) or R (the set of real numbers), Kn = Kn×1,
and K = K1. In (or simply I if its dimension is clear from the context) is the n× n identity
matrix, and ej is its jth column. The superscript “·∗” takes conjugate transpose while “·T ”
takes transpose only. σmin(X) denotes the smallest singular value of X.

We shall also adopt MATLAB-like convention to access the entries of vectors and matrices.
The set of integers from i to j inclusive is i : j. For vector u and matrix X, u(j) is u’s jth
entry, X(i,j) is X’s (i, j)th entry, diag(u) is the diagonal matrix with (diag(u))(j,j) = u(j);
X’s submatrices X(k:`,i:j), X(k:`,:), and X(:,i:j) consists of intersections of row k to row ` and
column i to column j, row k to row ` and all columns, and all rows and column i to column
j, respectively. Finally ‖ · ‖p (1 ≤ p ≤ ∞) is the `p norm of a vector or the `p operator norm
of a matrix, defined as

‖u‖p =


∑

j

|u(j)|p



1/p

, ‖X‖p = max
‖u‖p=1

‖Xu‖p.

bαc be the largest integer that is no bigger than α, and dαe the smallest integer that is no
less than α.

2 Main Results

An N ×N tridiagonal Toeplitz A takes this form

A =




λ µ

ν
. . . . . .
. . . . . . µ

ν λ



∈ CN×N . (2.1)

Throughout the rest of this paper, ν, λ, and µ are reserved as the defining parameters of A
in (2.1), and set

ξ = −
√

µν

ν
, τ =

λ

2
√

µν
, ζ = min

{
|ξ|, 1

|ξ|
}

, (2.2)

ρ = max
{∣∣∣τ +

√
τ2 − 1

∣∣∣ ,
∣∣∣τ −

√
τ2 − 1

∣∣∣
}

. (2.3)
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Any branch of
√

µν, once picked and fixed, is a valid choice in this paper. Note ρ ≥ 1 always
because (τ +

√
τ2 − 1)(τ − √

τ2 − 1) = 1. In particular if λ ∈ R, µ < 0 and ν > 0, then
ρ = |τ |+

√
|τ |2 + 1.

Recall Chebyshev polynomials of the first kind:

Tm(t) = cos(m arccos t) for |t| ≤ 1, (2.4)

=
1
2

(
t +

√
t2 − 1

)m
+

1
2

(
t−

√
t2 − 1

)m
for |t| ≥ 1, (2.5)

and define

Φ(+)
k+1(τ, ξ)

def=
k∑

j=0

′ |ξ|2j |Tj(τ)|2 , (2.6)

Φ(−)
k+1(τ, ξ)

def=
k∑

j=0

′ |ξ|−2j |Tj(τ)|2 , (2.7)

Φk+1(τ, ξ)
def=

k∑

j=0

′ ζ2j |Tj(τ)|2 ≡ min
{

Φ(+)
k+1(τ, ξ), Φ

(−)
k+1(τ, ξ)

}
, (2.8)

where
∑′

j means the first term is halved.

2.1 General Right-hand Sides

Our first main result is given in Theorem 2.1 whose proof, along with the proofs of other
results in the section, involve complicated computations and will be postponed to Section 3.

Theorem 2.1 For Ax = b, where A is tridiagonal Toeplitz as in (2.1) with nonzero (real or
complex) parameters ν, λ, and µ. Then the kth GMRES residual rk satisfies for 1 ≤ k < N

‖rk‖2

‖r0‖2
≤
√

k + 1
[
1
2

+ Φk+1(τ, ξ)
]−1/2

. (2.9)

Figure 2.1 plots residual histories for several examples of GMRES with each of b’s entries
being uniformly random in [−1, 1]. In each of the plots in Figure 2.1, as well as in Figures 2.2
and 2.3 below, we fix |τ | and |ξ|, take λ = 1 always, and then take

|µ| = |ξ|
2|τ | , µ = ±|µ|, and ν = |ν| = 1

2|τξ| .

Thus µ, ν ∈ R, and in fact ν > 0 always. When µ > 0, ξ = −
√

µ/ν < 0 and τ = 1/(2
√

µν) >

0, but when µ < 0, both ξ = −ι
√
|µ/ν| and τ = −ι/(2

√
|µν|) are imaginary, where ι =

√−1
is the imaginary unit. Figure 2.1 indicates that GMRES converges much faster for µ < 0
than for µ > 0 in each of the plots. There is a simple explanation for this: the eigenvalues of
A (see (3.11) below) are further away from the origin for a pure imaginary τ than for a real
τ for any fixed |τ |.

Our next main result given in Theorem 2.2 tells the worst asymptotic speed for ‖rk‖2.

Theorem 2.2 Under the conditions of Theorem 2.1,

lim
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

= lim
k→∞

[
max

r0∈{e1,eN}
‖rk‖2

‖r0‖2

]1/k

= min{(ζρ)−1, 1}. (2.10)

5



0 5 10 15 20 25 30 35 40 45 50
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k+1

||r
k
||

2
/||r

0
||

2
, upper bounds (|τ|=0.8, |ξ|=0.7)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.4375, ν=0.89286

||r
k
||

2
/||r

0
||

2
 for µ=−0.4375, ν=0.89286

0 5 10 15 20 25 30 35 40 45 50
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k+1

||r
k
||

2
/||r

0
||

2
, upper bounds (|τ|=0.8, |ξ|=1.2)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.75, ν=0.52083

||r
k
||

2
/||r

0
||

2
 for µ=−0.75, ν=0.52083

0 5 10 15 20 25 30 35 40 45 50
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k+1

||r
k
||

2
/||r

0
||

2
, upper bounds (|τ|=1, |ξ|=0.7)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.35, ν=0.71429

||r
k
||

2
/||r

0
||

2
 for µ=−0.35, ν=0.71429

0 5 10 15 20 25 30 35 40 45 50
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k+1

||r
k
||

2
/||r

0
||

2
, upper bounds (|τ|=1, |ξ|=1.2)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.6, ν=0.41667

||r
k
||

2
/||r

0
||

2
 for µ=−0.6, ν=0.41667

0 5 10 15 20 25 30 35 40 45 50
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

k+1

||r
k
||

2
/||r

0
||

2
, upper bounds (|τ|=1.2, |ξ|=0.7)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.29167, ν=0.59524

||r
k
||

2
/||r

0
||

2
 for µ=−0.29167, ν=0.59524

0 5 10 15 20 25 30 35 40 45 50
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

k+1

||r
k
||

2
/||r

0
||

2
, upper bounds (|τ|=1.2, |ξ|=1.2)

N =50

||r
k
||

2
/||r

0
||

2
 for µ=0.5, ν=0.34722

||r
k
||

2
/||r

0
||

2
 for µ=−0.5, ν=0.34722

Figure 2.1: GMRES residuals for random b uniformly in [−1, 1], and their upper bounds (dashed
lines) by (2.9). All indicate that our upper bounds are tight, except for the last few steps. Upper
bounds for the case µ > 0 in the top and bottom two plots are visually indistinguishable from the
horizonal line 100, suggesting slow convergence.
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2.2 Special Right-hand Sides

We now consider three special right-hand sides: b = e1 or eN or b(1)e1 +b(N)eN . In particular
they show that the upper bound in Theorem 2.1 is within a factor about at most (k + 1)3/2

of the true residual for b = e1 or eN , depending on whether |ξ| ≤ 1 or |ξ| ≥ 1.

Theorem 2.3 In Theorem 2.1, if b = e1, then the kth GMRES residual rk satisfies for
1 ≤ k < N

1
2



d k+1

2
e−1∑

j=0

|ξ|2j



−1 [

Φ(+)
k+1(τ, ξ)−

1
4

]−1/2

≤ ‖rk‖2

‖r0‖2
≤ 1

2
(1 + |ξ|2)

[
Φ(+)

k+1(τ, ξ)−
1
4

]−1/2

.

(2.11)
In particular,

1
2dk+1

2 e

[
Φ(+)

k+1(τ, ξ)−
1
4

]−1/2

≤ ‖rk‖2

‖r0‖2
≤

[
Φ(+)

k+1(τ, ξ)−
1
4

]−1/2

for |ξ| ≤ 1. (2.12)

Theorem 2.4 In Theorem 2.1, if b = eN , then the kth GMRES residual rk satisfies for
1 ≤ k < N

1
2



d k+1

2
e−1∑

j=0

|ξ|−2j



−1 [

Φ(−)
k+1(τ, ξ)−

1
4

]−1/2

≤ ‖rk‖2

‖r0‖2
≤ 1

2
(1 + |ξ|−2)

[
Φ(−)

k+1(τ, ξ)−
1
4

]−1/2

.

(2.13)
In particular,

1
2dk+1

2 e

[
Φ(−)

k+1(τ, ξ)−
1
4

]−1/2

≤ ‖rk‖2

‖r0‖2
≤

[
Φ(−)

k+1(τ, ξ)−
1
4

]−1/2

for |ξ| ≥ 1. (2.14)

The upper bound and the lower bound in (2.12) and these in (2.14) differ by a factor
roughly (k + 1), and thus they are rather sharp; so are the bounds in (2.11) for |ξ| ≤ 1 and
these in (2.13) for |ξ| ≥ 1. Comparing them to (2.9), we conclude that the upper bound by
(2.9) is fairly sharp for worst possible b.

But the bounds in (2.11) differ by a factor O(|ξ|k+1|) for |ξ| > 1, and thus at least one
of them (upper or lower bound) is bad. Similar comments apply to the bounds in (2.13) for
|ξ| < 1. Our numerical examples indicate that the upper bounds are rather good regardless
of the magnitude of |ξ| for both cases b = e1 and b = eN . See Figure 2.2, where only the case
b = e1 is presented, since the case b = eN is similar.

Given Theorems 2.3 and 2.4, it would not be unreasonable to expect that the upper bound
in Theorem 2.1 would be sharp for very large or tiny |ξ| within a factor possibly about at
most (k + 1)3/2 for right-hand side b with b(i) = 0 for 2 ≤ i ≤ N − 1 and |b(1)| = |b(N)| > 0.
The following theorem indeed confirms this but only for k ≤ N/2. Our numerical examples
even support that the lower bounds by (2.15) would be good for k > N/2 (see Figure 2.3),
too, but we do not have a way to mathematically justify it yet.
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Figure 2.2: GMRES residuals for b = e1, sandwiched by their lower and upper bounds by (2.11). All
lower and upper bounds are very good for |ξ| ≤ 1 as expected, but only upper bounds are good when
|ξ| > 1. We also ran GMRES for b = eN and obtained residual history that is very much the same as
for b = e1 with |ξ| replaced by |ξ|−1.
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Figure 2.3: GMRES residuals for b = e1 +eN , sandwiched by their lower and upper bounds by (2.15)
and (2.16). Strictly speaking, (2.15) is only proved for k ≤ N/2, but it seems to be very good even
for k > N/2 as well. We also ran GMRES for b = e1 − eN and obtained residual history that is very
much the same.
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Theorem 2.5 In Theorem 2.1, if b(i) = 0 for 2 ≤ i ≤ N − 1, then the kth GMRES residual
rk satisfies

‖rk‖2

‖r0‖2
≥

min
i∈{1,N}

|b(i)|
2χ ‖r0‖2

[
Φk+1(τ, ξ)− 1

4

]−1/2

for 1 ≤ k ≤ N/2, (2.15)

‖rk‖2

‖r0‖2
≤

√
3

[
1
2

+ Φk+1(τ, ξ)
]−1/2

, (2.16)

where

1 < χ =
d k+1

2
e−1∑

j=0

ζ2j ≤
⌈

k + 1
2

⌉
.

Figures 2.2 and 2.3 plot residual histories for several examples of GMRES with b = e1

and b = e1 + eN , respectively. Finally we have the following theorem about the asymptotic
speeds of ‖rk‖2 for b = e1 and b = eN .

Theorem 2.6 Assume the conditions of Theorem 2.1 hold.

1. Let b = e1. If ρ > 1, then

min{(|ξ|2ρ)−1, (|ξ|ρ)−1, 1} ≤ lim inf
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ min{(|ξ|ρ)−1, 1}.
(2.17)

If ρ = 1 (which happens when and only when τ ∈ [−1, 1]), then

min{|ξ|−1, 1} × η ≤ lim inf
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ η, (2.18)

where η = lim supk→∞
[
1/4 +

∑k
j=1 |ξ|2j(cos jθ)2

]−1/(2k)
and θ = arccos τ . Regardless

of ρ > 1 or ρ = 1,

lim
k→∞

[‖rk‖2

‖r0‖2

]1/k

= min{(|ξ|ρ)−1, 1} for |ξ| ≤ 1. (2.19)

2. Let b = eN . If ρ > 1, then

min{(|ξ|−2ρ)−1, (|ξ|−1ρ)−1, 1} ≤ lim inf
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ min{(|ξ|−1ρ)−1, 1}.
(2.20)

If ρ = 1 (which happens when and only when τ ∈ [−1, 1]), then

min{|ξ|, 1} × η ≤ lim inf
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ η, (2.21)

where η = lim supk→∞
[
1/4 +

∑k
j=1 |ξ|−2j(cos jθ)2

]−1/(2k)
and θ = arccos τ . Regardless

of ρ > 1 or ρ = 1,

lim
k→∞

[‖rk‖2

‖r0‖2

]1/k

= min{(|ξ|−1ρ)−1, 1} for |ξ| ≥ 1. (2.22)
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Remark 2.1 As we commented before, our numerical examples indicate that the upper
bounds in Theorems 2.3 and 2.4 are rather accurate regardless of the magnitude of |ξ| for
both cases b = e1 and b = eN (see Figure 2.2) and the lower bound in Theorem 2.5 is also
accurate regardless of whether k ≤ N/2 or not (see Figure 2.3). This leads us to conjecture
that the following equations would hold.

lim
k→∞

‖rk‖1/k
2 = min{(|ξ|ρ)−1, 1} for b = e1, (2.23)

lim
k→∞

‖rk‖1/k
2 = min{(|ξ|−1ρ)−1, 1} for b = eN , (2.24)

where no constraint is assumed between k and N , except k < N as usual.

3 Proofs

We starting by reformulating the computation of GMRES residuals into an optimization
problem involving rectangular Vandermonde matrices when A is diagonalizable but otherwise
general, i.e., not necessarily tridiagonal Toeplitz.

Recall we assumed, without loss of generality, the initial approximation x0 = 0 and thus
the initial residual r0 = b−Ax0 = b.

Let N -by-N matrix A have eigendecomposition

A = XΛX−1, Λ = diag(λ1, λ2, . . . , λN ), (3.1)

and let Vk+1,N be the (k + 1)×N rectangular Vandermonde matrix

Vk+1,N
def=




1 1 · · · 1
λ1 λ2 · · · λN
...

...
. . .

...
λk

1 λk
2 · · · λk

N


 (3.2)

having nodes {λj}N
j=1, and

Y = Xdiag(X−1b). (3.3)

Using (b, Ab, . . . , Ak−1b) = Y V T
k+1,N [24, Lemma 2.1], we have for GMRES

‖rk‖2 = min
u(1)=1

‖(b, Ab, . . . , Ak−1b)u‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2. (3.4)

It can be seen that for Y as in (3.3)

‖Y ‖2 ≤ ‖X‖2 max
i
|(X−1b)(i)|

≤ ‖X‖2‖X−1b‖2

≤ ‖X‖2‖X−1‖2‖b‖2, (3.5)
min

u(1)=1
‖Y V T

k+1,Nu‖2 ≤ ‖Y ‖2 min
u(1)=1

‖V T
k+1,Nu‖2

≤ κ(X) min
φk(0)=1

max
i
|φk(λi)| ‖b‖2,
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where φk is a polynomial of degree no higher than k. Thus, together with (3.4), they imply

‖rk‖2/‖r0‖2 ≤ κ(X) min
φk(0)=1

max
i
|φk(λi)|. (3.6)

Inequality (3.6) is often the starting point in existing quantitative analysis on GMRES con-
vergence [11, Page 54], as it seems that there is no easy way to do otherwise. It simplifies the
analysis by separating the study of GMRES convergence behavior into optimizing the con-
dition number of X and a polynomial minimization problem over A’s spectrum, but it could
potentially overestimate GMRES residuals. This is partly because, as observed by Liesen
and Strakoš [17], possible cancelations of huge components in X and/or X−1 were artificially
ignored for the sake of the convergence analysis. For tridiagonal Toeplitz matrix A we are
interested in here, however, rich structure allows us to do differently, namely starting with
(3.4) directly.

Switch to tridiagonal Toeplitz matrix A as in (2.1) which is diagonalizable when µ 6= 0
and ν 6= 0. In fact [21, pp.113-115] (see also [9, 17]),

A = XΛX−1, X = Ξ Z, Λ = diag(λ1, . . . , λN ), (3.7)

λj = λ− 2
√

µν tj , tj = cos θj , θj =
jπ

N + 1
, (3.8)

Z(:,j) =

√
2

N + 1
(sin jθ1, . . . , sin jθN )T , (3.9)

Ξ = diag(1, ξ−1, . . . , ξ−N+1). (3.10)

It can be verified that ZT Z = IN ; So A is normal if |ξ| = 1, i.e., |µ| = |ν| > 0. Set
ω = −2

√
µν. By (3.8), we have

λj = ω(tj − τ), 1 ≤ j ≤ N. (3.11)

We define the mth Translated Chebyshev Polynomial in z of degree m as

Tm(z; ω, τ) def= Tm(z/ω + τ) (3.12)
= ammzm + am−1 mzm−1 + · · ·+ a1mz + a0m, (3.13)

where ajm ≡ ajm(ω, τ) are functions of ω and τ , and upper triangular Rm ∈ Cm×m, a
matrix-valued function in ω and τ , too, as

Rm ≡ Rm(ω, τ) def=




a00 a01 a02 · · · a0 m−1

a11 a12 · · · a1 m−1

a22 · · · a2 m−1

. . .
...
am−1 m−1




, (3.14)

i.e., the jth column consists of the coefficients of Tj−1(z;ω, τ). Set

T N
def=




T0(t1) T0(t2) · · · T0(tN )
T1(t1) T1(t2) · · · T1(tN )

...
...

...
TN−1(t1) TN−1(t2) · · · TN−1(tN )


 (3.15)
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and VN = VN,N for short. Then
V T

N RN = T T
N . (3.16)

Equation (3.16) yields V T
N = T T

NR−1
N . Extracting the first k + 1 columns from both sides of

V T
N = T T

NR−1
N yields

V T
k+1,N = T T

k+1,N R−1
k+1, (3.17)

where T k+1,N = (T N )(1:k+1,:).
In what follows, we will prove theorems in the previous section in the order of their

appearance, except Theorem 2.2 whose proof requires Theorem 2.6 will be proved last.
We need to estimate GMRES residual

‖rk‖2 = min
u(1)=1

‖Y V T
k+1,Nu‖2

for Ax = b here, where Y = Xdiag(X−1b). Now notice Y = X diag(X−1b) and X = ΞZ with
Z in (3.9) being real and orthogonal to get

Y V T
k+1,N = ΞZ diag(ZT Ξ−1b) (T T

N )(:,1:k+1)R
−1
k+1

= ΞM(:,1:k+1)R
−1
k+1 (3.18)

= ΞM(:,1:k+1)Ξ
−1
k+1 Ξk+1R

−1
k+1. (3.19)

where Ξk+1 = Ξ(1:k+1,1:k+1), the (k + 1)th leading submatrix of Ξ,

M = Z diag(ZT Ξ−1b) T T
N . (3.20)

It follows from (3.4) and (3.19) that

σmin(ΞM(:,1:k+1)Ξ
−1
k+1) ≤

‖rk‖2

minu(1)=1 ‖Ξk+1R
−1
k+1u‖2

≤ ‖ΞM(:,1:k+1)Ξ
−1
k+1‖2. (3.21)

The second inequality in (3.21) is our foundation to prove Theorem 2.1. There are two
quantities to deal with

min
u(1)=1

‖Ξk+1R
−1
k+1u‖2 and ‖ΞM(:,1:k+1)Ξ

−1
k+1‖2. (3.22)

We shall now do so. In its present general form, the next lemma was proven in [14, 15]. It
was also implied by the proof of [13, Theorem 2.1]. See also [16].

Lemma 3.1 If W has full column rank, then

min
u(1)=1

‖Wu‖2 =
[
eT
1 (W ∗W )−1e1

]−1/2
. (3.23)

In particular if W is nonsingular, minu(1)=1 ‖Wu‖2 = ‖W−∗e1‖−1
2 .

By this lemma, we have (note a00 = 1)

min
u(1)=1

‖Ξk+1R
−1
k+1u‖2 = ‖Ξ−∗k+1R

∗
k+1e1‖−1

2 =
[
1
2

+ Φ(+)
k+1(τ, ξ)

]−1/2

. (3.24)
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This gives the first quantity in (3.22). We now turn to the second one there. It can be seen
that ΞM(:,1:k+1)Ξ

−1
k+1 = (ΞMΞ−1)(:,1:k+1) since Ξ is diagonal. To compute ΞMΞ−1, we shall

investigate M in (3.20) first.

M =
N∑

`=1

Z diag(ZΞ−1b(`)e`) T T
N

=
N∑

`=1

b(`)ξ
`−1Z diag(Ze`) T T

N

=
N∑

`=1

b(`)ξ
`−1Z diag(Z(:,`)) T T

N . (3.25)

In Lemma 3.2 and in the proof of Lemma 3.3 below, without causing notational conflict, we
will temporarily use k as a running index, as opposed to the rest of the paper where k is
reserved for GMRES step index.

Lemma 3.2 For θj = j
N+1π and integer `,

N∑

k=1

cos `θk =





N, if ` = 2m(N + 1) for some integer m,
0, if ` is odd,
−1, if ` is even, but ` 6= 2m(N + 1) for any integer m.

(3.26)

Proof: If ` = 2m(N + 1) for some integer m, then `θk = 2mkπ and thus cos `θk = 1. Assume
that ` 6= 2m(N + 1) for any integer m. Set φ = `π/(N + 1). We have [10, p.30]

N∑

k=1

cos `θk =
N∑

k=1

cos kφ = cos
N + 1

2
φ× sin Nφ

2

sin φ
2

.

Now notice cos N+1
2 φ = cos `

2π = 0 for odd ` and (−1)`/2 for even `, and sin Nφ
2 = sin( `

2π −
φ) = −(−1)`/2 sinφ for even ` to conclude the proof.

Lemma 3.3 Let M`
def= Z diag(Z(:,`))T T

N for 1 ≤ ` ≤ N . Then the entries of M` are zeros,
except at those positions (i, j), graphically forming four straight lines:

(a) i + j = ` + 1,
(b) i− j = `− 1,
(c) j − i = ` + 1,
(d) i + j = 2(N + 1)− ` + 1.

(3.27)

(M`)(i,j) = 1/2 for (a) and (b), except at their intersection (`, 1) for which (M`)(`,1) = 1.
(M`)(i,j) = −1/2 for (c) and (d). Notice no valid entries for (c) if ` ≥ N − 1 and no valid
entries for (d) if ` ≤ 2.

Proof: For 1 ≤ i, j ≤ N ,

2(N + 1) · (M`)(i,j) = 4
N∑

k=1

sin kθi sin `θk cos(j − 1)θk
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= 4
N∑

k=1

sin iθk sin `θk cos(j − 1)θk

= 2
N∑

k=1

[cos(i− `)θk − cos(i + `)θk] cos(j − 1)θk

=
N∑

k=1

[cos(i + j − `− 1)θk + cos(i− j − ` + 1)θk

− cos(i + j + `− 1)θk − cos(i− j + ` + 1)θk] .

Since all

i1 = i + j − `− 1,

i2 = i− j − ` + 1,

i3 = i + j + `− 1,

i4 = i− j + ` + 1

are either even or odd at the same time, Lemma 3.2 implies (M`)(i,j) = 0 unless one of them
takes the form 2m(N + 1) for some integer m. We now investigate all possible situations as
such, keeping in mind that 1 ≤ i, j, ` ≤ N .

1. i1 = i+j−`−1 = 2m(N +1). This happens if and only if m = 0, and thus i+j = `+1.
Then

i2 = −2j + 2, i3 = 2`, i4 = −2j + 2` + 2.

They are all even. i3 and i4 do not take the form 2m(N + 1) for some integers m. This
is obvious for i3, while i4 = 2m(N + 1) implies m = 0 and j = ` + 1, and thus i = 0
which cannot happen. However if i2 = 2m(N + 1), then m = 0 and j = 1, and thus
i = `.

So Lemma 3.2 implies (M`)(i,j) = 1/2 for i + j = ` + 1 and i 6= `, while (M`)(`,1) = 1.

2. i2 = i−j−`+1 = 2m(N +1). This happens if and only if m = 0, and thus i−j = `−1.
Then

i1 = 2j − 2, i3 = 2j + 2`− 2, i4 = 2`.

They are all even. i3 and i4 do not take the form 2m(N + 1) for some integers m. This
is obvious for i4, while i3 = 2m(N + 1) implies m = 1 and j = N + 2 − `, and thus
i = N + 1 which cannot happen. However if i1 = 2m(N + 1), then m = 0 and thus
j = 1 and i = ` which has already been considered in Item 1.

So Lemma 3.2 implies (M`)(i,j) = 1/2 for i− j = `− 1 and i 6= `, while (M`)(`,1) = 1.

3. i3 = i + j + ` − 1 = 2m(N + 1). This happens if and only if m = 1, and thus
i + j = 2(N + 1)− ` + 1. Then

i1 = 2(N + 1)− 2`, i2 = 2(N + 1)− 2j − 2` + 2, i4 = 2(N + 1)− 2j + 2.

They are all even. i1 and i2 do not take the form 2m(N + 1) for some integers m. This
is obvious for i1, while i2 = 2m(N + 1) implies m = 0 and j = N + 2 − `, and thus
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i = N + 1 which cannot happen. However if i4 = 2m(N + 1), then m = 1 and thus
j = 1 and i = 2(N + 1)− ` which is bigger than N + 2 and not possible.

So Lemma 3.2 implies (M`)(i,j) = −1/2 for i + j = 2(N + 1)− ` + 1.

4. i4 = i−j+`+1 = 2m(N +1). This happens if and only if m = 0, and thus j−i = `+1.
Then

i1 = 2j − 2`− 2, i2 = −2`, i3 = 2j − 2.

They are all even, and do not take the form 2m(N + 1) for some integers m. This is
obvious for i2. i1 = 2m(N + 1) implies m = 0 and j = ` + 1, and thus i = 0 which
cannot happen. i3 = 2m(N +1) implies m = 0 and thus j = 1 and i = −` which cannot
happen either.

So Lemma 3.2 implies (M`)(i,j) = −1/2 for j − i = ` + 1.

This completes the proof.
Now we know M`. We still need to find out ΞMΞ−1. Let us examine it for N = 5 in

order to get some idea about what it may look like. ΞMΞ−1 for N = 5 is



b(1)
1
2 ξ2 b(2) −1

2 ξ2 b(1) + 1
2 ξ4 b(3) −1

2 ξ4 b(2) + 1
2 ξ6 b(4) −1

2 ξ6 b(3) + 1
2 ξ8 b(5)

b(2)
1
2 b(1) + 1

2 b(3) ξ2 1
2 b(4) ξ4 −1

2 ξ2 b(1) + 1
2 ξ6 b(5) −1

2 ξ4 b(2)

b(3)
1
2 b(2) + 1

2 ξ2 b(4)
1
2 b(1) + 1

2 b(5) ξ4 0 −1
2 ξ2 b(1) − 1

2 ξ6 b(5)

b(4)
1
2 b(3) + 1

2 b(5) ξ2 1
2 b(2)

1
2 b(1) − 1

2 b(5) ξ4 −1
2 b(4) ξ4

b(5)
1
2 b(4)

1
2 b(3) − 1

2 b(5) ξ2 1
2 b(2) − 1

2 ξ2 b(4)
1
2 b(1) − 1

2 b(3) ξ2




.

We observe that for N = 5, the entries of ΞMΞ−1 are polynomials in ξ with at most two
terms. This turns out to be true for all N .

Lemma 3.4 The following statements hold.

1. The first column of ΞMΞ−1 is b. Entries in every other columns taking one of the three
forms: (b(n1)ξ

m1 + b(n2)ξ
m2)/2 with n1 6= n2, b(n1)ξ

m1/2, and 0, where 1 ≤ n1, n2 ≤ N
and mi ≥ 0 are nonnegative integer.

2. In each given column of ΞMΞ−1, any particular entry of b appears at most twice.

As the consequence, we have ‖ΞM(:,1:k+1)Ξ
−1
k+1‖2 ≤

√
k + 1‖b‖2 if |ξ| ≤ 1.

Proof: Notice M =
∑N

`=1 b(`)ξ
`−1M` and consider M ’s (i, j)th entry which comes from the

contributions from all M`. But not all of M` contribute as most of them are zero at the
position. Precisely, with the help of Lemma 3.3, those M` that contribute nontrivially to the
(i, j)th position are the following ones subject to satisfying the given inequalities.

(a) if 1 ≤ i + j − 1 ≤ N or equivalently i + j ≤ N + 1, Mi+j−1 gives a 1/2.

(b) if 1 ≤ i− j + 1 ≤ N or equivalently i ≥ j, Mi−j+1 gives a 1/2.

(c) if 1 ≤ j − i− 1 ≤ N or equivalently j ≥ i + 2, Mj−i−1 gives a −1/2.
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Figure 3.1: Computation of M(i,j). Left: Regions of entries as divided by inequalities in (a) and (d); Middle:
Regions of entries as divided by inequalities in (b) and (c); Right: Regions of entries as divided by all inequalities in
(a), (b), (c), and (d).

(d) if 1 ≤ 2(N + 1)− (i + j) + 1 ≤ N or equivalently i + j ≥ N + 3, M2(N+1)−(i+j)+1 gives a
−1/2.

These inequalities, effectively 4 of them, divided entries of M into nine possible regions as
detailed in Figure 3.1. We shall examine each region one by one. Recall

(ΞMΞ−1)(i,j) = ξ−i+1M(i,j)ξ
j−1 = ξj−iM(i,j),

and let

γa =
1
2
b(i+j−1)ξ

2j−2,

γb =
1
2
b(i−j+1),

γc = −1
2
b(j−i−1)ξ

2(j−i−1),

γd = −1
2
b(2(N+1)−(i+j)+1)ξ

2(N+1)−(i+j).

Each entry in the 9 possible regions in the rightmost plot of Figure 3.1 is as follows.

1. (a) and (b): (ΞMΞ−1)(i,j) = γa + γb.

2. (a) and (c): (ΞMΞ−1)(i,j) = γa + γc.

3. (b) and (d): (ΞMΞ−1)(i,j) = γb + γd.

4. (c) and (d): (ΞMΞ−1)(i,j) = γc + γd.

5. (a) and i− j = −1: (ΞMΞ−1)(i,j) = γa.

6. (b) and i + j = N + 2: (ΞMΞ−1)(i,j) = γb.

7. (c) and i + j = N + 2: (ΞMΞ−1)(i,j) = γc.

8. (d) and i− j = −1: (ΞMΞ−1)(i,j) = γd.
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9. i − j = −1 and i + j = N + 2: (ΞMΞ−1)(i,j) = 0. In this case, i = (N + 1)/2 and
j = (N + 3)/2. So there is only one such entry when N is odd, and none when N is
even.

With this profile on the entries of ΞMΞ−1, we have Item 1 of the lemma immediately. Item
2 is the consequence of M =

∑N
`=1 b(`)ξ

`−1M` and Lemma 3.3 which implies that there are
at most two nonzero entries in each column of M`.

As the consequence of Item 1 and Item 2, each column of ΞMΞ−1 can be expressed as
the sum of two vectors w and v such that ‖w‖2, ‖v‖2 ≤ ‖b‖2/2 when |ξ| ≤ 1, and thus
‖(ΞMΞ−1)(:,j)‖2 ≤ ‖b‖2 for all 1 ≤ j ≤ N . Therefore

‖ΞM(:,1:k+1)Ξ
−1
k+1‖2 ≤

√√√√
k+1∑

j=1

‖(ΞMΞ−1)(:,j)‖2
2 ≤

√
k + 1‖b‖2,

as expected.

Proof of Theorem 2.1. We shall only prove

‖rk‖2 ≤ ‖b‖2

√
k + 1

[
1
2

+ Φ(+)
k+1(τ, ξ)

]−1/2

for |ξ| ≤ 1 (3.28)

since the other case when |ξ| > 1 can be turned into this case as follows. Let Π =
(eN , . . . , e2, e1) ∈ RN×N be the permutation matrix. Notice ΠT AΠ = AT and thus Ax = b is
equivalent to

AT ΠT x = (ΠT AΠ)(ΠT x) = ΠT b. (3.29)

Note Kk(AT , ΠT b) = Kk(ΠT AΠ,ΠT b) = ΠT Kk(A, b), and

‖rk‖2 = min
y∈Kk(A,b)

‖b−Ay‖2 = min
ΠT y∈ΠTKk(A,b)

‖ΠT (b−AΠΠT y)‖2

= min
w∈Kk(AT ,ΠT b)

‖ΠT b−AT w‖2.

If (3.28) is proven true, then for |ξ| > 1 we have

‖rk‖2 ≤ ‖ΠT b‖2

√
k + 1

[
1
2

+ Φ(−)
k+1(τ, ξ)

]−1/2

because the ξ for AT is the reciprocal of the one for A.
Assume |ξ| ≤ 1. Inequality (3.28) is the consequence of (3.21), (3.24), and Lemma 3.4.

Remark 3.1 The leftmost inequality in (3.21) gives a lower bound on ‖rk‖2 in terms of
σmin(ΞM(:,1:k+1)Ξ

−1
k+1) which, however, is hard to bound from below because it can be as

small as zero, unless we know more about b such as b = e1 or eN as in Theorems 2.3 and 2.4.

Proof of Theorem 2.3: If b = e1, then M = M1 is upper triangular. More specifically

M = M1 =




1 0 −1/2

1/2 0
. . .

1/2 −1/2
. . . 0

1/2




(3.30)
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and, by (3.18),

Y Vk+1,N =
(

Ξk+1M̃R−1
k+1

0

)
=

(
Ξk+1M̃Ξ−1

k+1D
−1 ×DΞk+1R

−1
k+1

0

)
,

where M̃ = M(1:k+1,1:k+1) and D = diag(2, 1, 1, . . . , 1). Therefore

σmin(Ξk+1M̃Ξ−1
k+1D

−1) ≤ minu(1)=1 ‖Y V T
k+1,Nu‖2

minu(1)=1 ‖DΞk+1R
−1
k+1u‖2

≤ ‖Ξk+1M̃Ξ−1
k+1D

−1‖2. (3.31)

Recall ‖rk‖2 = minu(1)=1 ‖Y V T
k+1,Nu‖2. Let Pk+1 = (e1, e3, . . . , e2, e4, . . .) ∈ R(k+1)×(k+1). It

can be seen that

P T
k+1(Ξk+1M̃Ξ−1

k+1D
−1)Pk+1 =

1
2

(
E1

E2

)
,

where E1 ∈ Rd
k+1
2
e×d k+1

2
e, E2 ∈ Rb

k+1
2
c×b k+1

2
c, and

Ei =




1 −ξ2

1
. . .
. . . −ξ2

1




, E−1
i =




1 ξ2 · · · ξ2(m−1)

1
. . .

...
. . . ξ2

1




.

Hence ‖Ei‖2 ≤
√
‖Ei‖1‖Ei‖∞ = 1 + |ξ|2. Therefore

‖Ξk+1M̃Ξ−1
k+1D

−1‖2 =
1
2

max{‖E1‖2, ‖E2‖2} ≤ 1
2
(1 + |ξ|2).

Similarly use ‖E−1
i ‖2 ≤

√
‖E−1

i ‖1‖E−1
i ‖∞ to get

‖E−1
1 ‖2 ≤

d k+1
2
e−1∑

j=0

|ξ|2j , ‖E−1
2 ‖2 ≤

b k+1
2
c−1∑

j=0

|ξ|2j .

Therefore

σmin(Ξk+1M̃Ξ−1
k+1D

−1) =
1
2

min{σmin(E1), σmin(E2)}

=
1
2

min{‖E−1
1 ‖−1

2 , ‖E−1
2 ‖−1

2 }

≥ 1
2



d k+1

2
e−1∑

j=0

|ξ|2j



−1

.

Finally, by Lemma 3.1, we have

min
u(1)=1

‖DΞk+1R
−1
k+1u‖2 = ‖D−∗Ξ−∗k+1R

∗
k+1e1‖−1

2 =
[
Φ(+)

k+1(τ, ξ)−
1
4

]−1/2

.

19



This, together with (3.31), lead to (2.11).

As in the proof of Theorem 2.1, by applying Theorem 2.3 to the permuted system (3.29),
we get Theorem 2.4 for b = eN .

Proof of Theorem 2.5: Now b = b(1)e1 + b(N)eN . Notice the form of M1 in (3.30),
and that MN is M1 after its rows reordered from the last to the first. For the case M =
b(1)M1 + ξN−1b(N)MN , and also Lemma 3.4 implies that only positive powers of ξ appear in
the entries of ΞMΞ−1. Therefore when |ξ| ≤ 1,

‖ΞM(:,1:k+1)Ξ
−1
k+1‖2 ≤ ‖ΞMΞ−1‖2

≤ |b(1)| ‖ |M1| ‖2 + |b(N)| ‖ |MN | ‖2

≤ |b(1)|
√

3/2 + |b(N)|
√

3/2

≤
√

3‖b‖2, (3.32)

where |M`| takes entrywise absolute value, and we have used

‖ |MN | ‖2 = ‖ |M1| ‖2 ≤
√
‖M1‖1‖M1‖∞ =

√
3/2.

Inequality (2.16) for |ξ| ≤ 1 is the consequence of (3.21), (3.24), and (3.32). Inequality (2.16)
for |ξ| ≥ 1 follows from itself for |ξ| ≤ 1 applied to the permuted system (3.29).

To prove (2.15), we use the lines of arguments in the proof for Theorem 2.3 and notice
that for 1 ≤ k ≤ N/2

Y Vk+1,N =




k

k W1

N−2k 0
k W2




It can be seen from the proof for Theorem 2.3 that

min
u(1)=1

‖W1u‖2 ≥ |b(1)|
2



d k+1

2
e−1∑

j=0

|ξ|2j



−1 [

Φ(+)
k+1(τ, ξ)−

1
4

]−1/2

,

min
u(1)=1

‖W2u‖2 ≥ |b(N)|
2



d k+1

2
e−1∑

j=0

|ξ|−2j



−1 [

Φ(−)
k+1(τ, ξ)−

1
4

]−1/2

.

Finally use

min
u(1)=1

‖Y Vk+1,Nu‖2 ≥ max
{

min
u(1)=1

‖W1u‖2, min
u(1)=1

‖W2u‖2

}

to complete the proof.

Proof of Theorem 2.6: We note that

lim sup
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ 1, lim sup
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

≤ 1

for any b because ‖rk‖2 is nonincreasing.
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Suppose b = e1. Consider first ρ > 1. Then |Tj(τ)| ∼ 1
2ρj , and thus

Φ(+)
k+1(τ, ξ)−

1
4
∼ 1

4

k∑

j=0

(|ξ|ρ)2j =
1
4
· (|ξ|ρ)2(k+1) − 1

(|ξ|ρ)2 − 1
. (3.33)

If |ξ|ρ > 1, then (3.33) and Theorem 2.3 imply

lim sup
k→∞

[‖rk‖2

‖r0‖2

]1/k

≤ lim
k→∞

[
1
2
(1 + |ξ|2)

]1/k [
Φ(+)

k+1(τ, ξ)−
1
4

]−1/(2k)

(3.34)

= (|ξ|ρ)−1,

lim inf
k→∞

[‖rk‖2

‖r0‖2

]1/k

≥ lim
k→∞

1
21/k



d k+1

2
e−1∑

j=0

|ξ|2j



−1/k [

Φ(+)
k+1(τ, ξ)−

1
4

]−1/(2k)

(3.35)

=





(|ξ|ρ)−1, for |ξ| ≤ 1,

(|ξ|2ρ)−1, for |ξ| > 1.

They together give (2.17) for the case |ξ|ρ > 1. If |ξ|ρ ≤ 1, then must |ξ| < 1 and
min{(|ξ|ρ)−1, 1} = 1, min{(|ξ|2ρ)−1, (|ξ|ρ)−1, 1} = 1, and

lim inf
k→∞

[‖rk‖2

‖r0‖2

]1/k

≥ 1

by (3.35) because Φ(+)
k+1(τ, ξ)− 1

4 is approximately bounded by (k + 1)/4 by (3.33). So (2.17)
holds for the case |ξ|ρ ≤ 1, too. Now consider ρ = 1. Then τ +

√
τ2 − 1 = eιθ for some

0 ≤ θ ≤ π, where ι =
√−1 is the imaginary unit. Thus τ ∈ [−1, 1] and in fact

2τ = (τ +
√

τ2 − 1) + (τ −
√

τ2 − 1) = 2 cos θ, Tj(τ) = cos jθ.

Therefore Φ(+)
k+1(τ, ξ)− 1

4 ∼ 1
4 +

∑k
j=1 |ξ|2j(cos jθ)2 which implies

lim
k→∞

[
Φ(+)

k+1(τ, ξ)−
1
4

]−1/(2k)

= η.

Inequalities (3.34) and (3.35) remain valid and yield (2.18). Finally regardless of ρ > 1 or
ρ = 1, if |ξ| ≤ 1, then all leftmost sides and rightmost sides in (2.17) and (2.18) are equal to
min{(|ξ|ρ)−1, 1}. This proves (2.19). The proof for the case b = e1 is done.

The case for b = eN can be dealt with by applied the results for b = e1 to the permuted
system (3.29).

Proof of Theorem 2.2: Note again that lim supk→∞
(
supr0

‖rk‖2/‖r0‖2

)1/k ≤ 1.
First we prove

lim sup
k→∞

[
max

r0∈{e1,eN}
‖rk‖2

‖r0‖2

]1/k

≤ lim sup
k→∞

[
sup
r0

‖rk‖2

‖r0‖2

]1/k

≤ min{(ζρ)−1, 1}. (3.36)
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The first inequality is obvious because {e1, eN} ∈ {r0}. We now prove the second one.
If ρ = 1, then min{(ζρ)−1, 1} = 1 because ζ−1 ≥ 1; no proof is needed. If ρ > 1,
then |Tj(τ)| ∼ 1

2ρj , and thus (3.33). Now if ζρ > 1, then (3.33) and Theorem 2.1 im-

ply lim supk→∞
(
supr0

‖rk‖2/‖r0‖2

)1/k ≤ (ζρ)−1 which also holds if ζρ ≤ 1 because then
(ζρ)−1 ≥ 1.

Next we prove

lim inf
k→∞

[
max

r0∈{e1,eN}
‖rk‖2

‖r0‖2

]1/k

≥ min{(ζρ)−1, 1}. (3.37)

If |ξ| ≤ 1, then ζ = |ξ| and thus

lim inf
k→∞

[
max

r0∈{e1,eN}
‖rk‖2

‖r0‖2

]1/k

≥ lim inf
k→∞

[
max
r0=e1

‖rk‖2

‖r0‖2

]1/k

= min{(ξρ)−1, 1}

by (2.19) in Theorem 2.6. This is (3.37) for |ξ| ≤ 1. For the case |ξ| ≥ 1, we also have (3.37)
similarly by (2.22). The proof is completed by combining (3.36) and (3.37).

4 Exact Residual Norms for b = e1 and eN

In this section we present two theorems in which exact formulas for ‖rk‖2 for b = e1 and
b = eN are established. Let Ξ and Ξk+1 have their assignments as in Section 3.

Theorem 4.1 In Theorem 2.1, if b = e1, then the kth GMRES residual rk satisfies for
1 ≤ k < N

‖rk‖2 = ‖2Ξ−∗k+1y(1:k+1)‖−1
2 , (4.1)

where y ∈ C2dN/2e is defined as

y(2j−1) =
j∑

i=1

′ T̄2i−2(τ), y(2j) =
j∑

i=1

T̄2i−1(τ) for j = 1, 2, . . . , dN/2e,

and T̄j(τ) is the complex conjugate of Tj(τ).

Proof: We still have (3.30), and Y Vk+1,N =
(

Ξk+1M̃R−1
k+1

0

)
, where M̃ = M(1:k+1,1:k+1) as in

the proof of Theorem 2.3. Let D = diag(2, 1, 1, . . . , 1). Noticing Ξk+1M̃R−1
k+1 = Ξk+1M̃D−1×

DR−1
k+1 is nonsingular, we have by Lemma 3.1

min
u(1)=1

‖Y V T
k+1,Nu‖2 = ‖w‖−1

2 ,

where w = Ξ−∗k+1(M̃D−1)−T D−T R∗
k+1e1, or equivalently (M̃D−1)T Ξ∗k+1w = D−T R∗

k+1e1. We
shall now solve it for w. Let Pk+1 = (e1, e3, . . . , e2, e4, . . .) ∈ R(k+1)×(k+1). It can be verified
that

P T
k+1(M̃D−1)Pk+1 =

1
2

(
G1

G2

)
,
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where G1 ∈ Rd
k+1
2
e×d k+1

2
e, G2 ∈ Rb

k+1
2
c×b k+1

2
c, and

Gi =




1 −1

1
. . .
. . . −1

1




, G−1
i =




1 1 · · · 1

1
. . .

...
. . . 1

1




.

Solve (P T
k+1M̃D−1Pk+1)T P T

k+1Ξ
∗
k+1w = P T

k+1D
−T R∗

k+1e1 ≡ P T
k+1z for w to get

w = 2Ξ−∗k+1Pk+1

(
G−T

1

G−T
2

)
P T

k+1z,

where z = (1
2T0(τ), T1(τ), T2(τ), . . . , Tk(τ))∗. Finally notice w = 2Ξ−∗k+1y(1:k+1) to complete

the proof.

Apply Theorem 4.1 to the permuted system (3.29) to get

Theorem 4.2 In Theorem 2.1, if b = eN , then the kth GMRES residual rk satisfies for
1 ≤ k < N

‖rk‖2 = ‖2Ξ∗k+1y(1:k+1)‖−1
2 , (4.2)

where y ∈ C2dN/2e is the same as the one in Theorem 4.1.

5 Concluding Remarks

There are a few GMRES error bounds with simplicity comparable to the well-known bound
for the conjugate gradient method [3, 11, 19, 23]. In [6, Section 6], Eiermann and Ernst
proved

‖rk‖2

‖r0‖2
≤ [

1− γ(A) γ(A−1)
]k/2 (5.1)

where γ(A) = inf{|z∗Az| : ‖z‖2 = 1} is the distance from the origin to A’s field of values.
When A’s Hermitian part, H = (A+A∗)/2, is positive definite, it yields a bound by Elman [8]
(see also [7])

‖rk‖2

‖r0‖2
≤

[
1−

(
1

‖H−1‖2‖A‖2

)2
]

. (5.2)

As observed in [1], this bound of Elman can be easily extended to cover the case when only
γ(A) > 0

‖rk‖2

‖r0‖2
≤ (sin θ)k, θ = arccos

γ(A)
‖A‖2

. (5.3)

Recently Beckermann, Goreinov, and Tyrtyshnikov [1] improved (5.3) to

‖rk‖2

‖r0‖2
≤ (2 + 2/

√
3)(2 + δ)δk, δ = 2 sin

θ

4− 2θ/π
. (5.4)

All three bounds (5.1), (5.3), and (5.4) yield meaningful estimates only when γ(A) > 0, i.e.,
A’s field of values does not contain the origin.
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However in general, there is not much concrete quantitative results for the convergence
rate of GMRES, based on limited information on A and/or b. In part, it is a very diffi-
cult problem, and such a result most likely does not exist, thanks to the negative result of
Greenbaum, Pták, and Strakoš [12] which says that “Any Nonincreasing Convergence Curve
is Possible for GMRES”. A commonly used approach, as a step towards getting a feel of how
fast GMRES may be, is through assuming that A is diagonalizable to arrive at (3.6):

‖rk‖2/‖r0‖2 ≤ κ(X) min
φk(0)=1

max
i
|φk(λi)|, (5.5)

and then putting aside the effect of κ(X) to study only the effect in the factor of the associated
minimization problem. This approach does not always yield satisfactory results, especially
when κ(X) À 1 which occurs when A is highly nonnormal. Getting a fairly accurate quan-
titative estimate for the convergence rate of GMRES for a highly nonnormal case is likely to
be very difficult. Trefethen [22] established residual bounds based on pseudospectra, which
sometimes is more realistic than (5.5) but is very expensive to compute. In [4], Driscoll, Toh,
and Trefethen provided an nice explanation on this matter.

Our analysis here on tridiagonal Toeplitz A represents one of few diagonalizable cases
where one can analyze rk directly to arrive at simple quantitative results such as (5.1) – (5.4).
Previous other results except those in Ernst [9], while helpful in explaining and understanding
various convergence behaviors, are more qualitative than quantitative.

Two conjectures are made in Remark 2.1.

References

[1] B. Beckermann, S. A. Goreinov, and E. E. Tyrtyshnikov, Some remarks on the Elman
estimate for GMRES, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 772–778.

[2] B. Beckermann and A. B. J. Kuijlaars, Superlinear CG convergence for special right-hand
sides, Electron. Trans. Numer. Anal., 14 (2002), pp. 1–19.

[3] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[4] T. A. Driscoll, K.-C. Toh, and L. N. Trefethen, From potential theory to matrix iterations
in six steps, SIAM Rev., 40 (1998), pp. 547–578.

[5] M. Eiermann, Fields of values and iterative methods, Linear Algebra Appl., 180 (1993), pp. 167–
197.

[6] M. Eiermann and O. G. Ernst, Geometric aspects in the theory of Krylov subspace methods,
Acta Numer., 10 (2001), pp. 251–312.

[7] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for non-
symmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345–357.

[8] H. C. Elman, Iterative Methods for Large, Sparse Nonsymmetric Systems of Linear Equations,
PhD thesis, Department of Computer Science, Yale University, 1982.

[9] O. G. Ernst, Residual-minimizing Krylov subspace methods for stabilized discretizations of
convection-diffusion equations, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1079–1101.

[10] I. S. Gradshteyn and I. M. Ryzhik, Table Of Integrals, Series, and Products, Academic
Press, New York, 1980. Corrected and Enlarged Edition prepared by A. Jeffrey, incorporated the
fourth edition prepared by Yu. V. Geronimus and M. Yu. Tseytlin, translated from the Russian
by Scripta Technica, Inc.

24



[11] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.
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