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ON ACYCLIC COMPLEXES OF FREE MODULES

MERI T. HUGHES, DAVID A. JORGENSEN, AND LIANA M. ŞEGA

Abstract. We consider the question of how minimal acyclic complexes of free
modules arise over a commutative local ring. A standard construction gives
that every totally reflexive module yields such a complex. We show that for
certain rings this construction is essentially the only method of obtaining such
complexes. We also give examples of rings which admit acyclic complexes of
free modules which cannot be obtained by means of this construction.

introduction

Let R be a commutative ring. An acyclic complex of projective R-modules is a
complex

A : · · · → A2
dA
2−−→ A1

dA
1−−→ A0

dA
0−−→ A−1

dA
−1

−−→ A−2 → · · ·

with Ai projective for each i and H(A) = 0. An acyclic complex of projectives A

satisfying H(A∗) = 0, where A∗ = HomR(A, R), is said to be totally acyclic, or
a complete resolution. Such complexes are foundational in the theory of complete
(or Tate) (co)homology, and determine important characteristics of the ring R and
the category of R-modules, see [4] and [1] for example. Properties and uses of
totally acyclic complexes have been studied extensively. More recently, the failure
of acyclic complexes to be totally acyclic is studied in [8] and [7]. In this paper
we are concerned with the more fundamental question of how acyclic complexes
of projectives arise. We show that when certain classical ring invariants are not
too small, such complexes can occur apart from a canonical construction involving
dualization.

We assume throughout that R is a local ring, with maximal ideal m, and we
assume that our complexes are locally finitely generated. In this case acyclic com-
plexes of finitely generated projective modules are acyclic complexes of finitely
generated free modules, and one has a notion of minimality of such complexes.
This allows us to ignore trivial constructions, such as split-exact complexes of free
modules.

Every R-module M has a free resolution, but it is not always possible to extend
this resolution (to the right) to an acyclic complex of free modules A with M =
CokerdA

1 . A standard process by which one can extend a resolution goes as follows:
if there exists an R-module N such that M ∼= N∗, where N∗ = HomR(N, R), and

Exti
R(N, R) = 0 for all i > 0, then one can splice together a free resolution of

M with the dual of a free resolution of N in order to obtain an acyclic complex
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of free R-modules. This construction is described in more detail in Construction
1.1 of Section 1. We shall refer to complexes obtained from this construction as
semi-dualized complexes.

Every totally acyclic complex of free modules is semi-dualized. Moreover, the
known examples of minimal acyclic complexes of finitely generated free modules
which are not totally acyclic, constructed by Jorgensen and Şega in [8], are also
semi-dualized. Christensen and Veliche [6] initiated a systematic study of acyclic
complexes of finitely generated free modules over rings R with m

3 = 0, and raised
the question:

Question. ([6, 3.4]) If A is a minimal acyclic complex of finitely generated free
R-modules, then is A necessarily a semi-dualized complex?

In this paper we give answers to the question in terms of the following classical
invariants of the ring R. The Loewy length of R is the integer

``(R) = min{n ≥ 0 |mn ⊆ (x) for some system of parameters x of R},

and the codimension of R, codim R, is the number edim R − dim R, where edim R
denotes the minimal number of generators of m.

In Section 1 we show that the question has a positive answer provided codim R ≤
2, or R is Cohen-Macaulay with either ``(R) ≤ 2, or codim R = ``(R) = 3.

In Section 2 we give examples of minimal acyclic complexes of free modules over
Cohen-Macaulay rings R with codim R ≥ 5 and ``(R) ≥ 3 over which the question
has a negative answer.

The question remains open for local rings with codim R = 4 and ``(R) ≥ 3.
When m

3 = 0 and R is not Gorenstein, it is shown in [6] that a minimal acyclic
complex of finitely generated free R-modules A can only have one of the following
types of behavior:

(i) The sequence {rankR Ai} is constant; this happens precisely when the
residue field of R is not a direct summand of Coker dA

i for any i.
(ii) There exists an integer χ such that the sequence {rankR Ai}i≤χ is constant

and the sequence {rankR Ai}i≥χ is strictly increasing.

Our basic examples in Section 2 satisfy m
3 = 0 and exhibit behavior of type (i).

Question [6, 3.5] asks if all complexes of type (i) are necessarily totally acyclic.
Thus we also answer negatively this question.

1. Semi-dualized Complexes of Free Modules

In this section (R, m) denotes a commutative local ring, with maximal ideal m.
We consider complexes of finitely generated free R-modules

A : · · · −→ An+1

dA
n+1

−−−→ An

dA
n−−→ An−1 −→ · · ·

For each integer n, the nth syzygy module of A is ΩnA = CokerdA
n+1. The nth

shift of A is the complex Σ
nA with (ΣnA)i = Ai−n and dΣ

n
A

i = (−1)ndA
i−n. We

write A>n for the complex with ith component (respectively, differential) equal to
Ai (respectively, dA

i ) if i ≥ n and 0 if i < n. The trivial complex is the complex
with Ai = 0 for all i.

We let ( )∗ denote the dualization functor HomR( , R). The dual complex of
A is the complex A∗, which has component (A−n)∗ in degree n, and differentials
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dA
∗

n = (dA
−n+1)

∗:

A∗ : · · · −→ (A−n−1)
∗

(dA
−n

)
∗

−−−−→ (A−n)∗
(dA

−n+1)
∗

−−−−−−→ (A−n+1)
∗ −→ · · ·

To avoid trivial constructions of acyclic complexes of free modules, such as those

built from direct sums of complexes of the form 0 → R
1
−→ R → 0, we use the

following notion of minimality: the complex A is minimal if dA

i (Ai) ⊆ mAi−1 for
all i ∈ Z.

In general, non-trivial minimal acyclic complexes of free modules may not exist.
A standard situation in which they do is described as follows.

1.1. Construction. Suppose that M is an R-module satisfying

(1.1.1) Exti
R(M, R) = 0 for all i > 0.

Let P
π
−→ M∗ be a free resolution of M∗, with P : · · · −→ P2

dP
2−−→ P1

dP
1−−→ P0 → 0,

and Q
η
−→ M be a free resolution of M , with Q : · · · −→ Q2

d
Q

2−−→ Q1
d
Q

1−−→ Q0 → 0.
By condition (1.1.1), the complex

0 −→ M∗ η∗

−→ Q∗
0

(dQ
1

)∗

−−−−→ Q∗
1

(dQ
2

)∗

−−−−→ Q∗
2 −→ · · ·

is exact, and thus one can splice the complexes P and Q∗ = HomR(Q, R) together
to obtain an acyclic complex of free modules:

P|Q∗ : · · · −→ P2
dP
2−−→ P1

dP
1−−→ P0

η∗◦π
−−−→ Q∗

0

(dQ
1

)∗

−−−−→ Q∗
1

(dQ
2

)∗

−−−−→ Q∗
2 −→ · · ·

with the convention that (P|Q∗)i = Pi for i ≥ 0, and (P|Q∗)i = Q∗
−i−1 for i < 0.

This complex is minimal whenever P and Q are chosen minimal and M has no
non-zero free direct summand. It is non-trivial if M is non-zero.

Definition. We say that the complex A is semi-dualized if there exists an integer
s and an R-module M with Exti

R(M, R) = 0 for all i > 0 such that A is isomorphic
to Σ

s(P|Q∗), where the complex P|Q∗ is defined as in Construction 1.1, with P a
free resolution of M∗ and Q a free resolution of M .

The next lemma gives a useful characterization of semi-dualized complexes.

1.2. Lemma. An acyclic complex A of free R-modules is semi-dualized if and only

if there exists an integer c such that Hi(A
∗) = 0 for all i > c.

Proof. If A is semi-dualized, then A ∼= Σ
s(P|Q∗) for some s, with P|Q∗ as in 1.1.

One has

Hi(A
∗) ∼= Hi+s−1(Q

∗∗) ∼= Hi+s−1(Q) = 0 for all i > −s.

Assume now that A satisfies Hi(A
∗) = 0 for all i > c. Let s be any integer

satisfying s ≥ c and set M = Ωs(A∗). Then Q = Σ
−s(A∗)>s is a free resolution of

M . Since A is exact, we have Hi(Q
∗) = 0 for all i < 0, hence Exti

R(M, R) = 0 for
all i > 0. Note that we have M∗ = Ω−s+1A, and hence P = Σ

s−1A>−s+1 is a free
resolution of M∗, and thus A = Σ

−s+1(P|Q∗). �

An acyclic complex of free modules A is said to be totally acyclic if H(A∗) = 0.
A finitely generated R-module M is said to be totally reflexive (or, equivalently, to
have G-dimension zero) if the following conditions hold:

(1) the natural evaluation map M → M∗∗ is an isomorphism;
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(2) Exti
R(M, R) = 0 for all i > 0;

(3) Exti
R(M∗, R) = 0 for all i > 0.

A finitely generated R-module M is said to have Gorenstein dimension g, de-
noted G-dimR M = g, if g is the smallest integer such that there exists an ex-
act sequence 0 → Gg → · · · → G1 → G0 → M → 0 with Gi totally reflex-
ive modules. If no such integer exists, then G-dimR M = ∞. The “Auslander-
Buchsbaum formula for G-dimension” states that if G-dimR M < ∞, then in fact
G-dimR M = depth R − depth M .

It is clear from the definition that an R-module M is totally reflexive if and only
if M ∼= Ω0A for some totally acyclic complex of free modules A. We collect below
some variations on this fact, as suited for our purposes.

1.3. Lemma. Let A be an acyclic complex of finitely generated free R-modules.

(1) A is totally acyclic if and only if ΩiA is totally reflexive for all i ∈ Z.

(2) If G-dimR(ΩiA) < ∞ for some i, then A is totally acyclic.

(3) If A is totally acyclic, then it is semi-dualized, but not conversely.

Proof. (1) See Avramov and Martsinkovsky [4, Lem. 2.4].
(2) It is a known fact (see Auslander and Bridger [1]) that, in a short exact

sequence, if two modules have finite G-dimension, so does the third. A recursive
use of the short exact sequences:

0 → ΩjA → Aj → Ωj−1A → 0

gives then G-dimR(ΩjA) < ∞ for all j. The Auslander-Buchsbaum formula for
G-dimension and the depth lemma then give G-dimR(ΩjA) = 0 for all j, and (1)
shows that A is totally acyclic.

(3) The first part is given by Lemma 1.2. To see that the converse does not hold:
Jorgensen and Şega [8] constructed minimal acyclic complexes of finitely generated
free R-modules C with the property that Hi(C

∗) = 0 if and only if i ≥ 1. Moreover,
the complexes C in loc. cit. are semi-dualized. Thus not all semi-dualized acyclic
complexes of free modules are totally acyclic. �

1.4. Remark. If R is Gorenstein, then any finitely generated R-module M satisfies
G-dimR M < ∞. In consequence, Lemma 1.3(2) shows that the question posed in
the introduction has a positive answer for all Gorenstein rings. In fact, Iyengar and
Krause [7] show that Gorenstein rings are characterized by every acyclic complex
of projectives being totally acyclic.

The next results indicate other classes of rings for which the question in the
introduction has a positive answer.

1.5. Proposition. Let (R, m) be a local ring which is not Gorenstein and satisfies

one of the following conditions:

(1) R is Golod.

(2) R is Cohen-Macaulay and m
2 ⊆ (x) for some system of parameters x.

(3) codim R ≤ 2.

Then there exists no non-trivial minimal acyclic complex of finitely generated free

R-modules.

1.6. Proposition. Let (R, m) be a Cohen-Macaulay local ring with codim R = 3 and

m
3 ⊆ (x) for some system of parameters x. Then every minimal acyclic complex

of free R-modules is totally acyclic.
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Together the two propositions give the result mentioned in the introduction:

1.7. Corollary. Let R be a local ring of codimension c and Loewy length `. Then

every minimal acyclic complex of free modules is totally acyclic, and hence is semi-

dualized, provided one of the following holds:

(1) c ≤ 2,
(2) R is Cohen-Macaulay and ` ≤ 2, or

(3) R is Cohen-Macaulay and c = ` = 3 �

We prepare next for the proofs.

1.8. Betti numbers. If M is a finitely generated R-module, we denote by βR
i (M)

the ith Betti number of M , defined to be the integer rankk TorR
i (M, k); it is equal

to the rank of the ith free module in a minimal free resolution of M .
Assume that the local ring R satisfies the following property:

(∗) There exists an integer d such that for every non-zero finitely generated R-
module N with pdR N = ∞ the sequence {βR

i (N)}i≥d is strictly increasing.

Let A be a minimal acyclic complex of finitely generated free R-modules. Clearly,

(1.8.1) βR
j−i(Ω

iA) = rankR Aj for all j and i with j ≥ i .

If A is non-trivial, then Nakayama’s lemma and the Auslander-Buchsbaum-Serre
formula show that pdR ΩiA = ∞ for all i. Then property (∗) and (1.8.1) give that
rankR Ai > rankR Ai−1 for all i, which is impossible. Hence there are no non-trivial
minimal acyclic complexes of finitely generated free modules over a ring R satisfying
(∗).

1.9. Lemma. If A is a complex of finitely generated free R-modules and x is an

R-regular sequence, then the following hold:

(1) (A/xA)∗ and A∗/xA∗ are isomorphic complexes of free R/x-modules.

(2) A is acyclic if and only if A/xA is acyclic.

(3) A is totally acyclic if and only if A/xA is totally acyclic.

(4) A is semi-dualized if and only if A/xA is semi-dualized.

Proof. (1) is straightforward and left to the reader. To prove the remaining state-
ments we may assume that x consists of a single regular element x. Note that there

exists an exact sequence of complexes 0 → A
x
−→ A → A/xA → 0 which gives rise

in homology to the exact sequence

· · · → Hi(A)
x
−→ Hi(A) → Hi(A/xA) → Hi−1(A)

x
−→ · · ·

Obviously Hi(A) = 0 = Hi−1(A) implies Hi(A/xA) = 0. Also, since Hi(A) is
finitely generated for each i, Nakayama’s lemma gives that if Hi(A/xA) = 0, then
Hi(A) = 0. This proves (2). For (3), one may use parts (1) and (2) and for (4) one
needs to use in addition Lemma 1.2. �

Proof of Proposition 1.5. (1) When R is Golod, Peeva shows in [10, Proposition 5]
that R satisfies condition (∗) in 1.8, hence R admits no non-trivial minimal acyclic
complex of finitely generated free modules.

Under the assumption in (2), Lemma 1.9 shows that we may replace R with
R/xR, hence we may assume m

2 = 0. Let N be a finitely generated R-module and
let ∂ denote the differential in a minimal free resolution of N . Since m Im∂i = 0,
Im ∂i is a vector space over k, and it follows that βR

i (N) = eβR
i−1(N) for all i > 1,
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where e = edim R is the embedding dimension of R. Since R is not Gorenstein, we
have e > 1, hence R satisfies the condition (∗).

(3) In this case, Scheja [9] proves that the ring R is either a complete intersection,
or a Golod ring. Since it is assumed that R is not Gorenstein, we conclude that R
is Golod. The result is thus contained in (1). �

Proof of Proposition 1.6. By 1.4, we may assume that R is not Gorenstein. Fac-
toring out x, in view of Lemma 1.9, we can assume that R is a codimension 3 ring
with m

3 = 0. Then Theorem A of [6] gives that the Poincaré series of R satisfies
P R

k (t) = (1 − 3t + 2t2)−1, and thus has a pole of order 1 at t = 1. A result of
Avramov [2, Theorem 3.1] shows that the ring R has an embedded deformation,
that is, there exists a local ring (S, n) and a regular element y ∈ n

2 such that
R = S/(y). Furthermore, we have codim S = 2, hence, according to Scheja [9], the
ring S is either a complete intersection, or a Golod ring. Since we assumed that R
is not Gorenstein, we conclude that S is a Golod ring.

If M is a finitely generated R-module, then one has an exact sequence (see [5,
Chap. XVI, §5, Case 1.]):

· · · → TorR
n−1(M, k) → TorS

n(M, k) → TorR
n (M, k) →

→ TorR
n−2(M, k) → TorS

n−1(M, k) → . . .

which gives an inequality of Betti numbers:

(1.9.1) βS
n (M) ≤ βR

n (M) + βR
n−1(M) for all n ≥ 1.

Let A be a minimal acyclic complex of finitely generated free R-modules. By
[6, Theorem B] there exists χ ∈ Z ∪ {∞} and a nonnegative integer c such that
rankR Ai = c for all i < χ.

Let j be an integer with j < χ− (2c + 7). Set M = ΩjA. Using (1.8.1), we have
βR

n (M) = c for all n ≤ 2c + 7.
The inequality (1.9.1) gives

(1.9.2) βS
n (M) ≤ 2c for all n with 1 ≤ n ≤ 2c + 7

By [10, Proposition 4], there exists a constant B > 1 such that

βS
n+1(M) ≥ BβS

n (M) for all n ≥ 2 edimR

Assuming that pdS(M) = ∞, then one has that βS
n+1(M) > βS

n (M) for all n ≥ 6.
Combined with (1.9.2) this yields a contradiction. Hence pdS(M) < ∞.

Since R = S/(y) and y is regular on S, we see that M has finite complete
intersection dimension. (See Avramov, Gasharov and Peeva [3] for the definition
of CI-dimension.) Thus by [3, 1.4] we have G-dimR(M) < ∞, hence Lemma 1.3(2)
shows that A is totally acyclic. �

2. Minimal acyclic complexes of free modules which are not

semi-dualized

In this section we show that the question raised in the introduction has a negative
answer in general. More precisely, we construct minimal acyclic complexes of free
modules over codimension five local rings (R, m) with m

3 = 0 which are not semi-
dualized. We then extend these to such examples over Cohen-Macaulay rings R
where any choice of codim R ≥ 6 and ``(R) ≥ codim R − 2 is allowed.
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2.1. Let k be a field and α ∈ k be non-zero. Consider the quotient ring

R = k[X1, X2, X3, X4, X5]/I,

where the Xi are indeterminates (each of degree one), and I is the ideal generated
by the following 11 homogeneous quadratic relations:

X2
1 , X2

4 , X2X3, αX1X2 + X2X4, X1X3 + X3X4,

X2
2 , X2X5 − X1X3, X2

3 − X1X5, X4X5, X2
5 , X3X5 .

As a vector space over k, R has a basis consisting of the following 10 elements:

1, x1, x2, x3, x4, x5, x1x2, x1x3, x1x4, x1x5,

where xi denote the residue classes of Xi modulo I . Since I is generated by ho-
mogeneous elements, R is graded, and has Hilbert series 1 + 5t + 4t2. Moreover R
has codimension five, and it is local with maximal ideal m = (x1, . . . , x5) satisfying
m

3 = 0.

For each integer i ∈ Z we let di : R2 → R2 denote the map given with respect to
the standard basis of R2 by the matrix

(

x1 αix2

x3 x4

)

.

Consider the sequence of homomorphisms:

A : · · · → R2 di+1

−−−→ R2 di−→ R2 di−1

−−−→ R2 → · · · .

2.2. Theorem. The sequence A is a minimal acyclic complex of free R-modules

with Hi(A
∗) 6= 0 for all i ∈ Z.

Lemma 1.2 gives then:

2.3. Corollary. The minimal acyclic complex A is not semi-dualized. �

2.4. Remark. When α ∈ k is an element of infinite multiplicative order, the complex
A is non-periodic. When α has multiplicative order s for some integer s > 0, one
has that A is periodic of period s.

2.5. Remark. Christensen and Veliche ask in [6, 3.5] whether every acyclic complex
of free modules C with {rankCi} constant, over a local ring with m

3 = 0, is
necessarily totally acyclic. Theorem 2.2 gives a negative answer to this question as
well.

Proof of Theorem 2.2. Using the defining relations of R, one can easily show that
didi+1 = 0 for all i, hence A is a complex.

We let (a, b) denote an element of R2 written in the standard basis of R2 as a
free R-module. For each i, the k-vector space Im di is generated by the elements:

di(1, 0) = (x1, x3) di(x5, 0) = (x1x5, 0)

di(0, 1) = (αix2, x4) di(0, x1) = (αix1x2, x1x4)

di(x1, 0) = (0, x1x3) di(0, x2) = (0,−αx1x2)

di(x2, 0) = (x1x2, 0) di(0, x3) = (0,−x1x3)

di(x3, 0) = (x1x3, x1x5) di(0, x4) = (−αi+1x1x2, 0)

di(x4, 0) = (x1x4,−x1x3) di(0, x5) = (αix1x3, 0)
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Excluding di(0, x3) and di(0, x4), the above equations provide 10 linearly inde-
pendent elements in Im di. Thus rankk(Im di) = 10 for all i. Since

rankk Ker di + rankk Im di = rankk R2 = 20

we have dim Ker di = 10 for all i. Thus, Im di+1 = Ker di for all i, so that A is
acyclic.

To prove Hi(A
∗) 6= 0, we have that d∗

i = (di)
∗ : R2 → R2 is represented with

respect to the standard basis of R2 by the matrix
(

x1 x3

αix2 x4

)

.

For each i, the vector space Im d∗
i is generated by the following elements

d∗i (1, 0) = (x1, α
ix2) d∗i (x5, 0) = (x1x5, α

ix1x3)

d∗i (0, 1) = (x3, x4) d∗i (0, x1) = (x1x3, x1x4)

d∗i (x1, 0) = (0, αix1x2) d∗i (0, x2) = (0,−αx1x2)

d∗i (x2, 0) = (x1x2, 0) d∗i (0, x3) = (x1x5,−x1x3)

d∗i (x3, 0) = (x1x3, 0) d∗i (0, x4) = (−x1x3, 0)

d∗i (x4, 0) = (x1x4,−αi+1x1x2) d∗i (0, x5) = (0, 0)

Excluding d∗
i (0, x2), d∗i (0, x4), and d∗i (0, x5) which are redundant, we have only

9 linearly independent elements in Im d∗
i , hence rankk Im d∗i = 9 for every i. It

follows that rankk Ker d∗i = 11 for all i, hence Hi(A
∗) 6= 0. �

One can easily get examples of minimal acyclic complexes which are not semi-
dualized over local rings of any codimension larger than five as follows.

Let n ≥ 1 be an integer, and y1, . . . , yn be indeterminates over k. Define Rn to
be the local ring obtained by localizing R ⊗k k[y1, . . . , yn] at the maximal ideal

mn = (xi ⊗ 1, 1 ⊗ yj | 1 ≤ i ≤ 5, 1 ≤ j ≤ n)

Now let An denote the sequence

· · · → R2
n

dn

i+1

−−−→ R2
n

dn

i−→ R2
n

dn

i−1

−−−→ R2
n → · · · ,

where dn
i denotes the map di ⊗k k[y1, . . . , yn] localized at mn.

Let p1, . . . , pn be positive integers ≥ 2, set ` =
∑n

i=1(pi − 1) + 3, and consider
the Rn-sequence y = 1 ⊗ yp1

1 , . . . , 1 ⊗ ypn

n .

2.6. Corollary. The ring Rn is a local Cohen-Macaulay ring with codim(Rn) =
5, dim(Rn) = n and ``(Rn) = 3, and Sn = Rn/(y) is an artinian local with

codim(Sn) = n + 5 and ``(Sn) = `, such that the following hold:

(1) An is a minimal acyclic complex of free Rn-modules which is not semi-

dualized.

(2) An/yAn is a minimal acyclic complex of free Sn-modules which is not semi-

dualized.

Proof. The statements about Rn and Sn are clear.
Since R → R⊗k k[y1, . . . , yn] is a faithfully flat embedding of rings, the complex

A ⊗k k[y1 . . . , yn] stays exact, and then too after localizing. Thus An is acyclic
(and obviously minimal).
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We have Hi(A
∗) ⊗k k[y1, . . . , yn] ∼= Hi(A

∗ ⊗k k[y1, . . . , yn]) for all i. Moreover,
A∗ ⊗k k[y1, . . . , yn] localized at mn is isomorphic to (An)∗. Since Hi(A

∗) 6= 0 for
all i by Theorem 2.2, it follows that Hi((An)∗) 6= 0 for all i ∈ Z. Hence An is not
semi-dualized by Lemma 1.2. The statement about An/yAn follows from Lemma
1.9. �
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